2. Изменение спектральных и корреляционных параметров и характеристик лазерного излучения

Данная глава посвящена измерению наиболее специфичных параметров и характеристик лазерного излучения, непосредственно или косвенно связанных с его когерентностью. Как известно, последняя характеризуется двумя основными параметрами — временной когерентностью, то есть длительностью Dt цуга излучения с постоянной во времени фазой (или длиной когерентности Dl=c?Dt), и степенью пространственной когерентности, определяющей степень корреляции (синфазности) излучения по поперечному сечению лазерного пучка. Естественно, что непосредственное измерение степени когерентности может осуществляться только интерференционными методами, достаточно сложными как для их понимания, так и для реализации; этому и посвящен последний параграф данной главы. Более доступны эксперименты по косвенной оценке временной когерентности путем измерения ширины линии лазерного излучения Dnизл=1/2pDt. В зависимости от абсолютного значения Dnизл такие измерения могут проводиться как в оптическом диапазоне (Dnизл >106 Гц), так и в радиофизическом (при меньших значениях Dnизл), что будет рассмотрено соответственно в 2.2 и 2.3. Предварительно целесообразно вкратце напомнить основные моменты по физике лазерной генерации, связанные с когерентностью излучения.

2.1. Влияние параметров лазера на когерентность его излучения

По определению лазер — это прибор, в котором происходит усиление (и, наиболее часто, генерация) оптического излучения за счет стимулированных переходов. Поэтому в идеальном случае лазерное излучение должно быть абсолютно когерентно, т.е. время когерентности Dt®? и, соответственно, длина когерентности n®1, а степень пространственной когерентности n®1 (или к 100%). Такой ситуации соответствует излучение сверхстабильного одночастотного лазера бесконечно большой мощности. Естественно, что на практике это недостижимо. Поэтому целесообразно вкратце восстановить процесс генерации когерентного излучения в реальном лазере.
Генерация в лазере с линейным или кольцевым резонатором происходит в первом приближении на собственных (резонансных) частотах последнего, так как для них обеспечиваются наименьшие потери генерируемого излучения, т.е. максимальная (положительная) обратная связь. В оптическом резонаторе собственные резонансные частоты nmnq=Dnрез[q+(bmn/180°)], где Dnрез =c/2Lопт — частотный интервал между собственными продольными модами резонатора в линейном резонаторе (в кольцевом же Dnрез =c/Lопт); q — продольный индекс; bmn — фазовые искажения для bmn-й поперечной моды, определяемые геометрией резонатора.
К вторичным эффектам, оказывающим незначительное влияние на частоту генерации, относятся эффекты затягивания и отталкивания частот. Однако из-за высокой добротности (Q=Dn0.5/nmnq »106) оптического резонатора (т.е. малой по сравнению с nmnq ширины резонансного пика Dn0.5=с?aa/4pLопт) отклонение частоты генерации от собственной резонансной частоты nmn крайне незначительно и может быть обнаружено только радиофизическими методами (см. 2.3).
Гораздо сильнее на частоту генерации лазера влияют параметры активной среды: центральная частота лазерного перехода n0=(Ев-Ен)/h (Ев, Ен — средняя энергия верхнего и нижнего рабочих уровней соответственно, h — постоянная Планка) и ширина спектральной линии Dn. При этом из бесконечного (главным образом, по продольному индексу q) набора собственных резонансных частот именно активная среда селектирует одно или несколько (в зависимости от характера уширения лазерного перехода) значений вблизи n0.
По этой причине длина волны генерации lген=с/nген почти всех лазеров (за исключением лазеров на растворах красителей и, в меньшей степени, полупроводниковых лазеров) с достаточной для подавляющего большинства практических случаев точностью однозначно определяется используемой активной средой. С другой стороны, прецизионное измерение длины волны лазерной генерации становится в настоящее время особенно актуальным, так как эталон длины (1м) с 1983 г. определен непосредственно через длину волны пяти газоразрядных лазеров, стабилизированных по частоте излучения соответствующей поглощающей ячейкой. Длина волны этих рекомендованных лазеров лежит в диапазоне от 0,515 мкм (Аг+/127I2) до 3,39 мкм (He-Ne/CH4) и воспроизводится с погрешностью от 1,3?10-9 (Аг+/127I2) до 1,3?10-10 (He-Ne/CH4). Наименьшую погрешность (6?10-10) воспроизведения длины волны (0.57629476027 мкм) в видимом диапазоне обеспечивает вторая гармоника He-Ne лазера, стабилизированного по частоте поглощающей ячейкой на парах 127I2; обе красные линии He-Ne лазера (0,6329 и 0,612 мкм) стабилизируются с заметно меньшей воспроизводимостью: 1.1?10-9 и 1?10-9 соответственно.
В силу вышеизложенного измерение спектральных характеристик лазерного излучения может быть разделено на три группы (по мере нарастания разрешающей способности проводимого анализа):
1. Измерение спектра излучения многомодовых лазеров непрерывного действия и пикосекундных лазеров; для этой цели вполне достаточно традиционных методов спектрометрии (в отдельных случаях — высокой разрешающей способности).
2. Прецизионное измерение длины волны или частоты генерации стабилизированных по частоте лазеров, для чего применяют интерферометры Фабри-Перо и радиофизические методы "переноса" частоты от цезиевого стандарта (9192631770 Гц) или водородного лазера (14204057518 Гц) в оптической диапазон (обычно He-Ne лазер с метановой ячейкой, nген=88376181,608 МГц).
3. Измерение ширины полосы генерации одночастотного лазера или разности частот генерации двух однотипных частотностабилизированных лазеров, что осуществляется с помощью радиофизического метода фотобиений (гетеродинный прием лазерного излучения).
Рассмотрим вкратце основные особенности технических средств для измерения длины волны — интерферометров и частоты — (фото)гетеродинов.

2.2. Интерферометры для измерения спектра лазерного излучения

Специалист-оптик может исследовать спектр лазерного излучения (с разрешением, обычно вполне достаточным для надежного различения соседних продольных мод), наблюдая (рис.2.1) структуру колец 7, возникающих при освещении обычного интерферометра Фабри-Перо 5 коллимированным с помощью телескопической системы 3 пучком исследуемого лазера 1. На рис.2.1 показан и ряд вспомогательных компонентов, обеспечивающих успешное функционирование данной схемы: невзаимный элемент 2 обеспечивает однонаправленное (только слева направо) прохождение лазерного излучения, узкополосный фильтр 4 пропускает только излучение, характерное для исследуемой лазерной генерации; наконец, объектив 6 формирует картину интерференционных колец на расположенном на конечном расстоянии экране, что удобно для наблюдения невооруженным глазом и фоторегистрации. Визуальное наблюдение интерференционных колец можно вести и через бинокль или другой наблюдательный прибор.


Рис.2.1. Анализ частотной структуры излучения лазера с помощью интерферометра Фабри-Перо

В данной схеме длина интерферометра не должна превышать lмакс=2Dnген/с, где Dnген — ширина полосы генерации исследуемого лазера. В первом приближении ширина полосы генерации (для большинства газовых лазеров) равна величине неоднородного уширения Dnнеод лазерного перехода активной среды. Во втором приближении необходим учет кратности превышения усиления над потерями Х; Dnген=Dnнеод?. Потери интерферометра не должны превышать величины aaинт = aa+2tз = 4plинт?Dnрез /(3...10)С, где aa=2аз — остаточные потери (симметричного) интерферометра, а tз — коэффициент пропускания его зеркал; в этом случае с помощью интерферометра можно легко определить количество генерируемых лазером продольных мод, следующих с шагом Dnрез.
Для анализа частот генерации поперечных мод разрешение интерферометра следует существенно повысить, достигнуть чего можно либо уменьшая полные потери aaинт, либо увеличивая расстояние между пластинами интерферометра. Кроме того, при анализе спектра поперечных мод существенно усложняются вопросы согласования полей лазера и интерферометра и их взаимной юстировки.
Естественно, что непосредственное (визуальное) наблюдение спектра лазерного излучения приемлемо только для лазеров видимого диапазона. ЭОПы несколько расширяют этот диапазон в ультрафиолет (но не далее 0.2 мкм) и ближнюю ИК область (но не далее 1.1 мкм). С другой стороны, тяжело визуально определить соотношение мощностей отдельных мод по относительной яркости соответствующих интерференционных колец.
Поэтому в настоящее время при анализе спектрального состава лазерного излучения в основном используют (рис. 2.2) сканирующие интерферометры (5...7) с фотоэлектрическим приемником 10 и регистрацией спектра лазера 1 на экране осциллографа 11, горизонтальная развертка которого синхронизирована с линейным перемещением одного из зеркал (обычно - выходного) интерферометра с помощью пьезокерамики 8. Если размах (амплитуда) колебаний зеркала 7 превышает lген/2, то на экране осциллографа будет виден весь частотный диапазон интерферометра Dnинт=с/2lинт. Существенно, что в данном варианте разрешающая способность Dn?Dn0.5, определяется уже не только собственным разрешением интерферометра Dn0.5, но и размером диафрагмы 9 (перед фотоприемником), выделяющей малую часть нулевого порядка интерференционной картины (центрального кольца 7 на рис. 2.1). Узкополосный фильтр 4, как и в предыдущей схеме, уменьшает фоновую засветку.



Рис. 2.2. Анализ частотного спектра основной (ТЕМ00) моды лазера с помощью сканирующего интерферометра со сферическими зеркалами

Поскольку сканирование одного из зеркал интерферометра неизбежно приводит к его разъюстировке, то для обеспечения работоспособности сканирующего интерферометра обычно используют конфокальную геометрию (интерферометр Конна), а не плоские зеркала. В этом случае вопрос об отрицательном влиянии незначительных разъюстировок снимается, но ужесточаются требования к согласованию полей (собственных мод) исследуемого лазера и сканирующего интерферометра: вместо сравнительно простого (афокального) расширителя пучка телескопического типа требуется строго рассчитанная или, по крайней мере, точно установленная линза 3. В результате такого согласования устраняется перекачка энергии лазерного излучения в поперечные моды сканирующего интерферометра, частота которых при конфокальной геометрии, как известно, существенно отличается от частот основных (ТЕМ00) мод на Dnрез/2. По мере отхода от конфокальной конфигурации фазовые искажения bmn поперечных мод асимптотически уменьшаются до величин, существенно меньших 180° в интерферометре Фабри-Перо (с большим числом Френеля N=a2/lL).


Рис. 2.3. Развязка поляризационного типа: в верхней части рисунка — прямой ход луча, в нижней — обратный

Для обеспечения однонаправленного распространения исследуемого излучения от лазера к сканирующему интерферометру, что исключает влияние частотной характеристики интерферометра на исследуемый лазер, между лазером и согласующей оптикой (телескопом-расширителем для интерферометра Фабри-Перо и одиночной линзой 3 для интерферометра с вогнутым зеркалом) ставится "развязка" 2 — невзаимный элемент поляризационного типа (см. рис. 2.1, 2.2). Обычно он состоит из четвертьволновой пластинки l/4 (рис. 2.3), превращающей линейно поляризованное излучение ЛПверт исследуемого лазера в циркулярно поляризованный свет ЦП, и поляризационного элемента, установленного между лазером и этой пластинкой. Этот поляризационный элемент обычно представляет собой пленочный поляроид, а не поляризационную призму, так как он значительно дешевле, а обеспечиваемая им степень поляризации вполне достаточна, по крайней мере при измерении частотного спектра излучения многомодовых лазеров. Четвертьволновая пластинка в данном случае также может быть простейшего типа — из слюды, следует только помнить, что такой простейший вариант пластинки l/4 не обладает широкой спектральной областью из-за большой дисперсии показателей преломления n0 и ne слюды. В результате слюдяная пластинка l/4 может использоваться практически только для одной лазерной длины волны (в данном случае для 0.63; 3.39; 1.15; 0.49; 0.52 мкм и т.п.). Ахроматизированные пластинки из кристаллических материалов обеспечивают нормальное функционирование по крайней мере в пределах спектрального диапазона зеркал интерферометра (Dl?0.1l0), однако их стоимость и дефицитность существенно выше.
Функционирование такого простейшего невзаимного элемента достаточно элементарно: линейно поляризованное излучение ЛПверт исследуемого лазера без потерь проходит через поляроид, сориентированный соответствующим образом (выполняющий в прямом ходе пучка функцию поляризатора По), и пластинку l/4, превращается в циркулярно поляризованный свет ЦП, взаимодействующий с интерферометром. Отраженное им излучение (в случае сканирующего интерферометра оно переменно во времени) вновь проходит пластинку l/4, превращаясь опять в линейно поляризованное, плоскость поляризации ЛПгор которого, однако, ортогональна исходной, так как пластинка l/2 (l/4+l/4=l/2) приводит к повороту плоскости поляризации на 90°. Естественно, что поляроид, выполняющий при обратном ходе лучей роль анализатора Ан, задерживает отраженные от интерферометра пучки. Очевидно, что невзаимный элемент поляризационного типа нормально функционирует лишь в том случае, если интерферометр и согласующая оптика не изменяют состояния поляризации отраженных пучков.

Более эффективную развязку обеспечивают кольцевые (сканирующие) интерферометры, в которых отраженный пучок (рис.2.4) обычно (в трехзеркальном интерферометре) идет под углом 60°. Однако кольцевые сканирующие интерферометры (в том числе коммерческие) обладают определенной поляризационной анизотропией собственных мод, связанной в данном случае с поляризационной анизотропией зеркальных покрытий. Предпочтительнее использовать перпендикулярную ориентацию плоскостей поляризации пучка и кольцевого интерферометра.


Рис.2.4. Схема кольцевого сканирующего интерферометра: ПК — пьезокерамика, на которую подается пилообразное напряжение Uск(t)

Типичной геометрией кольцевого сканирующего интерферометра является почти плоскопараллельный резонатор, образованный одним вогнутым (R»1 м) и двумя плоскими зеркалами, расположенными в углах правильного треугольника со сторонами l1=l2=l3=0.1 м. Соотношение R/l»10 обеспечивает компромисс между допусками на разъюстировку интерферометра при сканировании одного из зеркал, точностью согласования оптических осей лазерного пучка и интерферометра, а также высокоэффективной селекцией в нем поперечных мод при реальных (поперечных) размерах лазерного пучка.
Оценим разрешающую способность интерферометров, понимая под этим полуширину (ширину на полувысоте) его резонансного пика Dn0.5=с?aa/4pLопт для типичной длины Lопт=0.1 м. Очевидно, что в этом случае Dn0.5 определяется суммарными потерями aa, которые в основном (при точной юстировке) состоят из потерь в диэлектрических зеркалах; последние при использовании современной технологии обеспечивают aaзер»0.1%. В результате получим Dn0.5»0.1%. Такого разрешения вполне достаточно для надежного различения продольных (аксиальных) мод метрового лазера (Dnрез»150 МГц), а также для анализа спектра мод высших порядков в квазиконфокальном резонаторе и на малых числах Френеля (N»1) — в плоскопараллельном резонаторе. Однако такая разрешающая способность не достаточна при изучении спектра поперечных мод обычных лазеров с плоскопараллельными (и близкими к ним почти плоскопараллельными) резонаторами и в ряде других случаев.
Дальнейшего повышения разрешающей способности можно достичь, используя принципиально отличные от методов оптической спектрометрии радиофизические способы.

2.3. Измерение частоты лазерного излучения методом фотобиений

Данный метод, часто называемый методом фотогетеродинного приема оптического излучения, обладает гораздо большей частотой и разрешающей способностью, по крайней мере до долей герц, что и является его основным преимуществом перед интерференционными измерениями. С другой стороны, как всякий косвенный способ (в данном случае, как показано ниже, осуществляется перенос частоты лазерного излучения в область радио- и даже звуковых частот) метод фотобиений требует грамотной интерпретации получаемых результатов с учетом специфики преобразования информации.
Ограничимся рассмотрением простейшего аналитического случая — фотобиений двух когерентных излучений с частотами n1 и n2, описываемых амплитудами электрической составляющей электромагнитного поля и . Если два таких пучка направить на какой-либо фотоприемник, то в соответствии с законом Столетова его фототок i(t) будет прямо пропорционален интенсивности светового потока

Ввиду ограниченной полосы частот фотоприемника фототоки, вызываемые тремя последними составляющими суммарного потока (с частотами, соответственно, n1+n2, 2n1 и 2n2) не могут быть зарегистрированы; два первых слагаемых ( ) образуют постоянную составляющую, которая и регистрируется при обычной фотоэлектрической регистрации световых потоков. Наиболее информативным в интересующем нас аспекте является третье слагаемое , содержащее полную информацию о частотно-фазовых соотношениях обоих световых пучков.
Рассмотренная выше ситуация используется на практике только для анализа частотно-фазовых соотношений в пучках двух одночастотных лазеров (обычно стабилизированных по частоте) или излучения двухчастотных лазеров.
Ввиду весьма ограниченного распространения лазеров последнего типа сосредоточим внимание на применении метода фотобиений для анализа особенностей спектра излучения одночастотного лазера. Для этого необходим второй лазер — гетеродин, стабильность частоты n2 и амплитуды Е2 излучения которого существенно выше, чем исследуемого. При этом условии спектр фототока разностной частоты, наблюдаемый на экране стандартного низкочастотного радиоэлектронного спектроанализатора, прямо пропорционален спектру исследуемого лазера. Естественно, что аналогичный результат получится в случае обычной, а не фотогетеродинной регистрации исследуемого потока фотоприемником. При этом, однако, на исследуемый сигнал (продетектированный фотоприемником спектр исследуемого излучения) будут наложены низкочастотные (а потому очень большие) шумы самого фотоприемника и электронного тракта. Фотогетеродинирование переносит исследуемый сигнал в область разностной частоты (n1-n2), где электронные шумы значительно меньше, что и позволяет более точно анализировать исследуемое излучение. Нестабильность излучения гетеродинного лазера приводит к дополнительному (ложному) уширению исследуемого спектра из-за свертки со спектром гетеродина.
Таким образом, рабочий диапазон частот фотогетеродинного метода сверху ограничен электронным трактом (включая, разумеется, фотоприемник) и обычно не превышает нескольких сотен мегагерц, а снизу - нестабильностью частоты (и амплитуды) лазера-гетеродина, минимальная величина которой (за время анализа спектра) »102 Гц.
Предельные возможности гетеродинного метода были реализованы при исследовании нестабильности частоты генерации одночастотного эталона длины волны 3,39 мкм на He-Ne лазере, стабилизированном по пику Лэмба от внутренней поглощающей ячейки с метаном: в зависимости от физической природы отдельные составляющие нестабильности колебались в пределах 10...40 Гц. В результате этого рассматриваемый метод не позволяет непосредственно исследовать и измерить предельную ширину спектральной линии излучения одночастотного стабилизированного лазера, которая представляет как теоретический, так и существенный практический интерес.
Для прецизионного анализа спектра одночастотного лазерного излучения обычно используют две модификации фотогетеродинного метода. Простейшая из них — гомодинный прием — заключается в анализе фотобиений между всеми компонентами (друг с другом) в спектре излучения одночастотного лазера. Такой прием обладает двумя недостатками: результат наблюдается на нулевой (центральной) частоте, т.е. сильно зашумлен; кроме того, на экране спектроанализатора получается не сам спектр, а его автокорреляция, что необходимо учитывать при интерпретировании полученных результатов. Так, нормальное распределение (гауссоида) уширится в раз, а лоренцева линия — в 2 раза, правда, без изменения формы линии.
Первый недостаток гомодинного метода (нулевая центральная частота и, соответственно, сильная зашумленность) можно устранить, используя метод переноса частот в оптическом или радиодиапазоне. При оптическом переносе часто используется (продольный линейный) эффект Доплера при отражении излучения от прямолинейно движущегося с постоянной скоростью Vзер зеркала. В результате спектр половины исследуемого пучка переносится в область более высоких (зеркало движется к лазеру) или низких (зеркало движется от лазера) частот на величину Dn=(2Vзер/c)nген. Основным недостатком метода оптического переноса частоты гомодинных фотобиений (иногда этот способ называют квазигомодинным детектированием, хотя такое название не полностью отражает его существо) является влияние нестабильности движения зеркала, приводящее к дополнительному и неконтролируемому уширению получаемого спектра.
Перенос спектра в область слабозашумленных (в электронном тракте) частот может быть осуществлен и радиотехническим методом гетеродинирования. Для максимального снижения шумов этот прием надо применять непосредственно к фототоку (а не в последующем электронном тракте, как это делают в обычных супергетеродинных приемниках слабых сигналов), для чего используют фотоЛБВ в СВЧ диапазоне сдвигов и ФЭУ с поперечным высокочастотным магнитным полем в диапазоне сдвигов < 103 МГц.
Метод галогенного приема ранее (до появления сканирующих интерферометров) широко использовался для анализа количества генерируемых (продольных) мод многочастотного лазера 1, излучение которого фокусируется на фотоприемнике 3 линзой 2 (рис. 2.5). При этом на экране радиочастотного спектроанализатора 4 наблюдались особенности частотного спектра фотобиений (возникающих в фотоприемнике 3), обусловленные эффектами затягивания и отталкивания (в области) частот генерации отдельных продольных мод лазера с неоднородно уширенной линией рабочего перехода. В результате спектр генерации незначительно (dn<106 Гц) и, что самое главное, неодинаково на разных модах отличался от эквидистантного (с шагом Dnрез=с/2Lопт) спектра оптического резонатора. В результате на первой разностной частоте Dni=ni-nj частоты биений разных мод несколько различались. Легко показать, что количество этих разностных частот на единицу меньше количества генерируемых мод Nген=INT(Dnген/Dnрез), где Dnген — ширина полосы генерации. Действительно, две моды с частотами n1=q1?Dnрез+dn1и n2=q2?Dnрез+dn2дадут биения только на единственной разностной частоте Dn21=Dnрез+dn2-dn1; аналогично для трех мод получим две почти одинаковые разностные частоты Dn31=Dnрез+dn3-dn2 и Dn21=Dnрез+dn2-dn1и еще одну частоту — вдвое большую Dn31=2Dnрез+dn3-dn1, на второй резонансной частоте число пиков на два меньше числа генерируемых мод /nген.



Рисунок 0.1 Определение количества генерируемых лазером мод по тонкой структуре спектра фотобиений, возникающих в квадратичном фотоприемнике; справа крупно показаны информативные участки спектра фотобиений, наблюдаемых на экране радиочастотного спектроанализатора, для случаев двух (N=2)…пяти (N=5) продольных мод.

Отметим две особенности рассматриваемого приема анализа спектра многочастотного лазера: во-первых, таким способом затруднительно (но, в принципе, возможно) определениеf интенсивностей отдельных мод, наглядно видимых на экране сканирующего интерферометра (правда, с плохим разрешением по частоте); во-вторых, из-за случайного совпадения величин сдвигов частоты отдельных мод (dnj=dni) могут возникнуть ошибки при определении Nген на первой разностной частоте. Последнего можно избежать, измеряя максимальную разностную частоту, еще присутствующую в спектре фотобиений: искомое число Nген на единицу больше DnN1/Dnрез; однако величина DnN1, может оказаться за пределами полосы пропускания фотоприемника (или электронного тракта), поэтому данный прием можно использовать только для контроля результатов измерения по количеству пиков на первой разностной частоте.
В заключение несколько слов об измерении основных параметров когерентности лазерного излучения: степени пространственной и временной когерентности излучения. Несмотря на то, что оба эти параметра являются фундаментальными при описании лазерного излучения, ни один из них до настоящего времени не стандартизован. Известные методы и средства измерений когерентности не являются таковыми, поскольку отсутствуют измеряемая величина, мера и узаконенная единица физической величины. Соответствующие измерительные установки фактически позволяют только визуализировать картину распределения поля и проводить ее качественный анализ. Поэтому вопросы, смазанные с непосредственным измерением параметров когерентности в данном учебном пособии не рассматривается.