2. Понятие о географических информационных системах

2.1. Структура и классификация.

Обязательными элементами более или менее полного определения ГИС следует считать указание на “ пространственность”, операционно - функциональные возможности и прикладную ориентацию систем.

Считалось, имея ввиду ГИС профессионально - географической направленности, что пространственность является необходимым условием для квалификации некоторой информационной системы как географической (например, автоматизированные радионавигационные системы, хотя и оперируют пространственно определенными данными, к географическим информационным системам не принадлежат). Основанием для отличия “ географических ” от “ негеографических “ информационных систем не может служить и содержание собираемых данных: идентичные по своему содержанию базы данных могут обслуживать совершенно различные (в том числе чисто географические и явно негеографические) приложения. Наоборот, системы разного целевого назначения вынуждены аккумулировать одинаковые сведения. Например, база данных с цифровым представлением рельефа используется для автоматизированного вычерчивания изогипс на топографической карте (топографическая картография), расчета и картографирования морфометрических показателей (геоморфология и тематическая картография), поиска оптимальных трасс шоссейных дорог или иных коммуникаций (инженерные изыскания и проектирование).

Одной из разновидностей ГИС становятся системы, основанные на материалах дистанционного зондирования, объединяющие функциональные возможности геоинформационных технологий с развитыми функциями обработки дистанционных изображений, так называемые интегральные (интегрированные) ГИС .

Минимальный набор критериев, позволяющих идентифицировать каждую конкретную геоинформационную систему, образует “ систему координат “ трехмерного пространства, осями которого являются: территориальный охват и связанный с ним функционально масштаб (или пространственное разрешение), предметная область информационного моделирования и проблемная ориентация.

При всем многообразии операций, целей, областей информационного моделирования, проблемной ориентации и иных атрибутов, характерных для создаваемых и действующих ГИС , логически и организационно в них можно выделить несколько конструктивных блоков, называемых также модулями или подсистемами, выполняющими более или менее четко определенные функции. Функции ГИС в свою очередь вытекают из четырех типов решаемых ею задач:

1. Сбор;

2. Обработка;

3. Моделирование и анализ;

•  Их использование в процессах принятия решений (рис. 1). 

Х. Калкинз [Calkins, 1977] приводит развернутую характеристику структуры ГИС , состоящей из четырех компонентов (подсистем): управления, обработки, анализа, и использования данных (рис.2).

Приведенные схемы соответствуют современным полномасштабным многофункциональным и универсальным ГИС , хотя в конкретных реализациях возможно изменеие баланса между их отдельными блоками или редуцирование отдельных подсистем (модулей).

Что касается классификации ГИС , то здесь наметилось тоже несколько направлений. Например, классификация по их проблемной ориентации :

•  Инженерные;

•  Имущественные ( ГИС для учета недвижимости), предназначенные для обработки кадастровых данных;

•  ГИС для тематического и статистического картографирования, имеющие целью управление природными ресурсами, составление карт переписям и планирование окружающей среды;

•  Библиографические, содержащие каталогизированную информацию о множестве географических документов;

•  Географические файлы с данными о функциональных и административных границах;

•  Системы обработки изображений с Ландсата и др.

Однако быстрая изменчивость и множественность вариантов решаемых проблем требует введения иных классификаций, учитывающих структуру и архитектуру ГИС . Разработана и представлена 3 - х компонентная классификация ГИС по следующим признакам:

1) характеру проблемно - процессорной модели;

2) структуре модели баз данных;

3) особенностям модели интерфейса.

На верхнем уровне классификации все информационные системы подразделены на пространственные и непространственные. ГИС , естественно, относятся к пространственным, делясь на тематические ( например социально - экономические) и земельные (кадастровые, лесные, инвентаризационные и др.). Существует разделение по территориальному охвату (общенациональные и региональные ГИС ); по целям (многоцелевые, специализированные, в том числе информационно - справочные, инвентаризационные, для нужд планирования, управления); по тематической ориентации (общегеографические, отраслевые, в том числе водных ресурсов, использования земель, лесопользования, туризма, рекреации и др.).

2.2. Источники данных и их типы

Среди источников данных, широко используемых в геоинформатике, наиболее часто привлекаются картографические, статистические и аэрокосмические материалы. Помимо указанных материалов гораздо реже используются данные специально проводимых полевых исследований и съемок, а также текстовые источники. Важный признак используемых данных - в какой цифровой или нецифровой (аналоговой) форме получается, хранится и используется тот или иной тип данных, от чего зависят легкость, стоимость и точность ввода этих данных в цифровую среду ГИС .

Использование географических карт как источников исходных данных для формирования тематических структур баз данных удобно и эффективно по ряду причин. Сведения, считанные с карт, обладают следующими достоинствами:

•  имеют четкую территориальную привязку,

•  в них нет пропусков, “белых пятен” в пределах изображаемой территории,

•  они в любой своей форме возможны для записи на машинные носители информации.

Картографические источники отличаются большим разнообразием кроме общегеографических и топографических карт насчитываются десятки и даже сотни типов различных тематических карт.

Следует отметить особую роль серий карт и комплексных атласов, где сведения приводятся в единообразной, систематизированной, взаимосогласованной форме; по проекции, масштабу, степени генерализации, современности, достоверности и другим параметрам. Такие наборы карт особенно удобны для создания тематических баз данных. Прекрасным примером может служить трехмерный Атлас океанов, содержащий подробные сведения о природных условиях, физико - химических параметрах, биологических ресурсах Мирового океана, представленных на сериях карт разной тематики, разновременных и разновысотных (глубинных) срезов.

Одним из основных источников данных для ГИС являются материалы дистанционного зондирования. Они объединяют все типы данных, получаемых с носителей космического (пилотируемые орбитальные станции, корабли многоразового использования типа ”ШАТТЛ”, автономные спутниковые съемочные системы и т.п.) и авиационного базирования (самолеты, вертолеты и микроавиационные радиоуправляемые аппараты) и составляют значительную часть дистанционных данных (remotely sensed data) как антонима контактных (прежде всего наземных) видов съемок, способов получения данных измерительными системами в условиях физического контакта с объектами съемки. К неконтактным (дистанционным) методам съемки помимо аэрокосмических относятся разнообразные измерительные системы морского (наводного) и наземного базирования, включая например фототеодолитную съемку, сейсмо - , электро - магниторазведку и иные методы геофизического зондирования недр, гидроакустические съемки рельефа морского дна с помощью гидролокаторов бокового обзора, иные способы, основанные на регистрации собственного или отраженного сигнала волновой природы.

Материалы аэрофотосъемки используются в основном для топографического картографирования, также широко применяется в геологии, в лесном хозяйстве, при инвентаризации земель. Космические снимки начали поступать с 60 - х годов и к настоящему времени их фонд исчисляется десятками миллионов.

В последние годы в среде ГИС широко используются портативные приемники данных о координатах объектов с глобальной системы навигации (позиционированная) GPS , дающие возможность получать плановые и высотные координаты с точностью от нескольких метров до нескольких миллиметров, что в сочетании с портативными персональными ЭВМ и специализированным программным обеспечением обработки данных с системы GPS позволяет использовать их для полевых съемок в условиях необходимости их сверхоперативного выполнения (например, при ликвидации последствий стихийных бедствий и техногенных катастроф).

Обратившись к статистическим материалам, имеющим цифровую форму, можно сказать, что они удобны для непосредственного использования в ГИС , среди которых особое место занимает государственная статистика. Основное ее предназначение - дать представление об изменениях в народном хозяйстве, составе населения, уровне его жизни, развитии культуры, учете недвижимости, наличии материальных резервов и их использовании, соотношении в развитии различных отраслей хозяйства и др.

Для получения государственной статистики на территории страны обычно используется единая методика ее сбора. В России кроме Госкомстата страны эту работу проводят также некоторые отраслевые министерства, например Министерство путей сообщения о железнодорожном транспорте и т.д. Статистическая отчетность различается по периодичности, она может быть суточной, недельной, полумесячной, квартальной, полугодовой и годовой. Кроме того, отчетность может быть и единовременной.

Для упорядочения всей совокупности данных государственной службой определены показатели по отраслям статистики. В качестве таких групп в нашей стране использовались отрасли статистики:

1) промышленности;

2) природных ресурсов и окружающей среды;

3) технического прогресса;

4) сельского хозяйства и заготовок;

5) капитального строительства;

6) транспорта и связи;

7) торговли;

8) труда и заработной платы;

9) населения, здравоохранения и социального обеспечения;

10) народного образования, науки и культуры и т. д.

•  Специализированная геоинформационная система ABRIS-Cadastr

Геоинформационные системы являются сегодня важным инструментом сбора и планирования географических объектов. Существующие сегодня в мире ГИС можно достаточно четко разбить на три основных категории:

•  Мощные полнофункциональные ГИС на основе рабочих станций на UNIX -системах и RISC -процессорах.

•  ГИС средней мощности ( или ГИС с редуцированными возможностями) класса MAPINFO на PC -платформе.

•  Программы строящиеся по принципу ГИС и имеющие малые потребности в ресурсах ЭВМ.

Последние обычно более узкоспециализированные, ориентированные на конкретный рынок работ. К таким системам относится ABRIS-Cadastr. Эта система ориентирована на обработку данных инвентаризации земель. Благодаря ей можно, введя информацию, оперативно получать все необходимые справочные данные установленной формы.

ГИС ABRIS-Cadastr одна из ГИС семейства ABRIS, разрабатываемых в Московском Университете Геодезии и Картографии с 1993 года.

Данная система служит целям земельного кадастра. Она позволяет вводить картографическую информацию снятую с помощью дигитайзера либо из файлов полученных GPS -приемниками. На основании информации можно вести оперативный учет земель и проводить сравнение учетных данных и результатов измерений, получать документы в виде распечаток (ведомости вычисления площадей, сравнительные ведомости занимаемых земель по учетным данным и по результатам измерений, ведомости вычисленных площадей, экспликация земель, планы различных масштабов и др.). Существует возможность редактирования и изменения как графической, так атрибутивной информации. Это позволяет всегда иметь обновленные данные.

В целом, ABRIS-Cadastr позволяет быстро и удобно автоматизировать работы в области земельного кадастра, хранить данные земельного кадастра в электронном виде.