Биосоциальня информатика
Скачать реферат: Биосоциальня информатика |
|||
|
Мы живем в удивительное время. Атомные электростанции и атомоходы, космические корабли и синхрофазатроны, луч лазера и сверхзвуковые самолёты, ЭВМ и роботы. Самое удивительное, что человечество разучилось удивляться тому, что автомат ли на Луне, или человек в космосе, облёт космического корабля вокруг Венеры или встреча с Сатурном.
Более 60 лет тому назад, а точнее в тридцатые годы в Москве начали действовать две первые автоматические телефонные станции (АТС). В настоящее время автоматической и полуавтоматической связью практически охвачен весь земной шар.
Передача информации на расстояние - одно из самых замечательных достижений человечества. Виды связи различны. Это телефон, телеграф, радиовещание, телевидение, передача различного рода данных для обработки их вычислительными центрами. А средства связи - это проводная связь (в основном кабельная) и беспроволочная, т.е. радиосвязь, будь то через специальные спутники Земли, по радиорелейным линиям или просто длинно-, средне- или коротковолновая.
Современная сеть передачи информации базируется во-первых на абонентских устройствах (телефоны, телевизоры, телеграфные аппараты), во-вторых на станциях, обеспечивающих соединение абонентов между собой, распределение потоков информации по направлениям; в-третьих на линиях связи, соединяющих абонентов со станциями и станции между собой.
Неизменным остаётся стремление человечества передавать информацию на максимально возможное, неограниченное расстояние. Телеграфирование - это запись на расстоянии, телефонирование - это звучание на расстоянии, телевидение - это изображение на расстоянии.
К обмену новостями или информацией люди стремились во все времена, даже в доисторические. Общение между людьми начиналось с отдельных звуков, жестов, мимики, затем посредством криков люди передавали информацию на расстояние. В Персии в VI веке до н.э. рабы стояли на высоких башнях и звучными голосами, криками передавали сообщения от одного к другому. В боевых условиях приказы передавались по цепочке, состоящей из воинов, на расстоянии передавались условными знаками сообщения. В Древнем Китае пользовались гонгами, а аборигены Африки и Америки пользовались деревянными барабанами-тамтамами, ударяя по ним то быстрее, то медленнее, то с разной силой, комбинируя звуки, можно было передавать известия с достаточной быстротой и на значительные расстояния.
Звуковая сигнализация сохранялась многие столетия. Благодаря "барабанному телеграфу" сведения о продвижении неприятельских войск распространялись на значительные расстояния и опережали официальные донесения курьеров. Средством звуковой сигнализации были также рожки, трубы, колокола, а после изобретения пороха выстрелы из ружей и пушек. Колокольный звон на Руси возвещал о пожаре, о торжествах и печали.
По мере развития человеческого общества звуковую сигнализацию постепенно оттесняла более совершенная - световая. Исторически первым средством световой сигнализации были костры. Костры служили сигналом древним грекам, римлянам, карфагенам и русским казакам в крестьянской войне 1670 - 1671 г. К огневой сигнализации по ночам или к дымовой - днём из сырой травы или сырых веток широко прибегали на южных границах России сторожевые посты казаков. При появлении неприятеля в Запорожской Сечи пользовались цепочкой костров, сооружённых на возвышенных местах, возвещаяя о грозящей опасности. Летопись световой сигнализации была бы неполной без упоминания о том, что жителя архипелага, отделённого Магелановым проливом от южной оконечности Южно-американского материка, также пользовались сторожевыми кострами, что дало основание английскому мореплавателю Джеймсу Куку присвоить архипелагу название "Огненной Земли".
Язык костров и зеркал был хотя и быстр, но очень беден.
Костры несли мало информации; дополнительно посылались гонцы с необходимыми подробными сообщениями. Способ "факельного телеграфа", основанного на сообщениях, передаваемых факелами в промежутках между зубцами стен, что соответствовало определённой букве кода, также не нашло применения на практике.
Французским механиком Клодом Шаппом был изобретён оптический, или семафорный, телеграф. Передача информации происходила с помощью вращения перекладины вокруг своей оси, прикреплёной к металлическому шесту на крыше башни. Русский механик-самоучка Иван Кулибин изобрёл систему семафорного телеграфа, которую он назвал "дальновещающей машиной", с оригинальным сигнальным алфавитом и слоговым кодом. Изобретение Кулибина было забыто царским правительством и в России пользовались изобретением французского инженера Шаппа.
Открытие магнитных и электрических явлений привело к повышению технических предпосылок создания устройств передачи информации на расстояние. С помощью металлических проводов, передатчика и приёмника можно было проводить электрическую связь на значительное расстояние. Стремительное развитие электрического телеграфа требовало конструирования проводников электрического тока.
Испанский врач Сальва в 1795 году изобрёл первый кабель, который представлял из себя пучок скрученных изолированных проводов.
Решающее слово в эстафете многолетних поисков быстродействующего средства связи суждено было сказать замечательному русскому учёному П.Л. Шиллингу. В 1828 году был испытан прообраз будущего электромагнитного телеграфа. Шиллинг был первым, кто начал практически решать проблему создания кабельных изделий для подземной прокладки, способных передавать электрический ток на расстояние. Как Шиллинг, так и русский физик, электротехник Якоби пришли к выводу о бесперспективности подземных кабелей и о целесообразности воздушных проводящих линий. В истории электротелеграфии самым популярным американцем был Сэмюэл Морзе. Он изобрёл телеграфный аппарат и азбуку к нему, позволяющие с помощью нажатия на ключ передавать информацию на дальние расстояния. Благодаря простоте и компактности устройства, удобству манипуляций при передаче и приёме и, главное, быстродействию телеграф Морзе в течение полустолетия был наиболее распространённой системой телеграфа, применявшейся во многих странах.
Передача на расстояние неподвижных изображений осуществил в 1855 году итальянский физик Дж. Казелли. Сконструированный им аппарат мог передавать изображение текста, предварительно нанесённого на фольгу. С открытием электромагнитных волн Максвелом и эксперементальным установлением их существования Герцем началась эпоха развития радио. Русский учёный Попов сумел впервые передать по радиосвязи сообщение в 1895 году. В 1911 г. русский учёный Розинг осуществил первую в мировой практике телевизионную передачу. Суть эксперемента состояла в том, что изображение преобразовывалось в электрические сигналы, которые с помощью электромагнитных волн переносились на расстояние, а принятые сигналы преобразовывались обратно в изображение. Регулярные телевизионные передачи начались в середине тридцатых годов нашего века.
Долгие годы упорных поисков, открытий и разочарований было потрачено на создание и конструирование кабельных сетей. Скорость распространения тока по жилам кабеля зависит от частоты тока, от электрических свойств кабеля, т.е. от электрического сопротивления и ёмкости. По истине триумфальным шедевром прошлого века была трансатлантическая прокладка проводного кабеля между Ирландией и Ньюфаундлендом, производимая пятью экспедициями.
Появление и развитие современных кабелей связи обязаны изобретению телефона. Термин "телефон" старше способа передачи на расстояние человеческой речи. Практически пригодный аппарат для передачи человеческой речи был изобретён шотландцем Беллом. Белл в качестве передающего и приёмного устройства использовал наборы металлических и вибрирующих пластинок - камертонов, настроенных каждый на одну музыкальную ноту. Аппарат, передающий музыкальную азбуку не имел успеха. Позже Белл с Ватсоном запатентовали описание способа и устройства для телефонной передачи голосовых и других звуков. В 1876 г. Белл впервые продемонстрировал свой телефон на Всемирной электротехнической выставке в Филадельфии.
Вместе с развитием телефонных аппаратов изменялись конструкции различных кабелей для приёма и передачи информации. Заслуживает внимания инженерное решение, запатентованное в 1886 году Шелбурном (США). Он предложил скручивать одновременно четыре жилы, но составлять цепи не из рядом лежащих, а из противолежащих жил, т.е. расположенных по диагоналям образованного в поперечном сечении квадрата. Для достижения гибкости в конструкции кабеля и изоляционной защиты токопроводящих жил потребовалось около полувека. К началу XX века была создана оригинальная конструкция телефонных кабелей и освоена технология их промышленного производства. К самой оболочке предъявлялись требования гибкости, стойкости к многократным изгибам, растягивающим и сжимающим нагрузкам, вибрациям, возникающим как при транспортировке, так и при эксплуатации, стойкости против коррозии. С развитием химической промышленности в XX веке начал меняться материал оболочки кабелей, теперь она уже стала пластмассовой или металлопластмассовой с полиэтиленом. Развитие конструкции сердечника для городских телефонных кабелей всегда шло по пути увеличения максимального числа пар и уменьшения диаметра токопроводящих жил. Радикальное решение проблеммы обещает принципиально новое направление в развитии кабелей связи: волоконно-оптические и просто оптические кабели связи. Исторически мысль об использовании в кабелях связи вместо медных жил стеклянные волокна (световоды) принадлежит английскому физику Тиндалю.
С развитием телевидения, космонавтики и сверхзвуковой авиации возникла нобходимость создания световодов вместо металла в кабелях. Уникальные возможности оптических кабелей состоят в том что по одному волокну (точнее по паре волокон) можно передавать миллион телефонных разговоров. Для передачи информации используются различные виды связи: кабельные, радиорелейные, спутниковые, тропосферные, ионосферные, метеорные. Кабели совместно с лазерами и ЭВМ позволят создать принципиально новые системы телекоммуникаций.
История развития средств связи и телекоммуникаций неотделима от всей истории развития человечества, поскольку любая практическая деятельность людей неотделима и немыслима без их общения, без передачи информации от человека к человеку.
Современное производство немыслимо без электронно-вычислительных машин (ЭВМ), ставших мощным средством переработки и анализа сообщений.
Любое сообщение имеет информационный параметр.
Например, изменение звукового давления во времени будет информационным параметром речи. Различные буквы и знаки препинания текста являются информационным параметром текстового сообщения. Звуковые колебания, соответствующие речи, являются примером непрерывного сообщения. Любой текст и знаки препинания относятся к дискретному сообщению.
Передача сообщений на расстояние с использованием электрических сигналов называется электросвязью. Электрические сигналы могут быть непрерывными и дискретными. Информационный параметр непрерывного сигнала (напряжение, сила тока, напряжённость электромагнитного поля, частота) с течением времени может принимать любые значения в заданных пределах. Информационный параметр дискретного сигнала (например напряжение) принимает одно из двух значений .