2. Представление функции интегралом Фурье
|
Проверка условий представимости
Данную ранее функцию (см. гл. 2) доопределим на всей прямой от до как равную нулю(рис.4).
Рис.4
а) f(x)-определенна на R;
б) f(x) возрастает на
, f(x) убывает на
- кусочнo-монотонна.
f(x) = const на
и
.
< .
Интеграл Фурье
В соответствии с теорией (см. гл. 1) найдем a(u) и b(u):
;
.
И в конечном варианте интеграл Фурье будет выглядеть так:
Интеграл Фурье в комплексной форме
Теперь представим интеграл Фурье в комплексной форме. На основе выше полученных разложений имеем:
,
,
а теперь получим интеграл в комплексной форме:
.
© Реферат плюс