Клонирование

Скачать реферат: Клонирование

План реферата

1. Бесполое размножение
2. Деление
3. Почкование
4. Размножение фрагментами (фрагментация)
5. Клонирование
6. Структурно-функциональная организация генетического материала.
7. Цитоплазматическое наследование
8. Положения хромосомной теории
9. Роль ДНК в наследственности
10. Химический состав хромосом
11. Природа генов
12. Способы клонирования.
Список используемой литературы:

1. Бесполое размножение

В природе существует два основных типа размножения – бесполое и половое. Каждый из этих типов делится на несколько подтипов. В данном случае нас интересует бесполое размножение. Оно происходит без образования гамет при участии одного организма. “При бесполом размножении образуются идентичные потомки, а единственным источником генетической изменчивости служат случайные мутации”1. Такое потомство, происходящее от одной родительской особи, называют клоном. Члены одного клона могут быть разными только вследствие случайной мутации. Существует подтипов бесполого размножения.

2. Деление

Таким способом размножаются простейшие одноклеточные организмы: каждая особь делится на несколько (две и более) дочерних клеток, которые идентичны материнской клетке. Перед делением происходит репликация ДНК, а у эукариотической клетки – также деление ядра. В основном происходит бинарное деление, при котором из одной материнской образуются две одинаковые дочерние клетки. Так делятся бактерии, простейшие и некоторые водоросли. Существует также множественное деление – процесс, при котором “вслед за рядом повторных делений клеточного ядра происходит деление самой клетки на множество дочерних клеток”2. Наблюдается у таких простейших, как споровики. Эти дочерние клетки являются спорами. Спора - одноклеточная единица, состоящая из небольшого количества цитоплазмы и ядра и имеющая микроскопические размеры.

3. Почкование

Почкование – форма бесполого размножения, когда дочерняя клетка образуется в виде выроста, очень напоминающего почку растения. Этот вырост появляется на родительской особи, а затем, отрываясь от него, ведёт самостоятельный образ жизни. При этом отпочковавшаяся особь идентична родительскому организму. Размножение почкованием встречается у разных групп организмов: у кишечнополостных (гидра) и у одноклеточных грибов (дрожжи).

4. Размножение фрагментами (фрагментация)

“Фрагментацией называют разделение особи на две или несколько частей, каждая из которых растёт и образует новую особь”.3 Фрагментацию можно наблюдать у некоторых низших животных, которые в силу своих слабо дифференцированных клеток сохраняют значительную способность к регенерации. Таких животных используют для экспериментального изучения процесса фрагментации. Часто при этом используют свободноживущую планарию. Эти эксперименты помогают понять процесс дифференцировки. В результате этого процесса каждая клетка приобретает определённую структуру, которая позволяет ей выполнять ряд специфических функций более эффективно. Это является одним из важнейших событий, которые происходят в процессе развития.

5. Клонирование

Итак, клонирование – “получение идентичных потомков при помощи бесполого размножения”4По-другому определение клонирования звучит так “Клонирование - это процесс изготовления генетически идентичных копий отдельной клетки или организма”5 .То есть эти организмы похожи не только внешне, но и генетический код, заложенный в них, одинаков.

Возможности клонирования открывают новые перспективы для садоводов-огородников, фермеров-животноводов, а также для его медицинского применения. “Одной из главных задач в данной области является создание коров, в молоке которых будет содержаться сыворотка человеческого алгаомина. Эта сыворотка используется для лечения ожогов и иных травм, и мировая потребность в ней составляет от 500 до 600 тон в год”6(рисунок 1).Это одно направление. Второе – создание органов животных, которые можно будет использовать для трансплантации человеку. “Во всех странах существует серьезный недостаток донорских органов - почек, сердец, поджелудочных желез, печени. Поэтому идея, что можно создать практически конвейерное производство трансгенетических свиней, по графику поставляющих такие органы для пациентов, специально подготовленных для приема этих органов, вместо того, чтобы отчаянно пытаться найти подходящую ткань у донора-человека - такая идея является волнующей перспективой”7. Путём клонирования можно получать животных с высокой продуктивностью яиц, молока, шерсти или таких животных, которые выделяют нужные человеку ферменты (инсулин, интерферон, химозин). “Человеческие ферменты можно получать и более простым способом: взяв нужную клетку крови человека, клонировать её и вырастить клеточную культуру, которая в лабораторных условиях будет производить нужный фермент. Комбинируя методы генной инженерии с клонированием, можно вывести трансгенные сельскохозяйственные растения, которые смогут сами себя защищать от вредителей или будут устойчивы к определённым болезням.”8.

6. Структурно-функциональная организация генетического материала.

Наследственность и изменчивость – фундаментальные свойства живого.

Жизнь как особое явление характеризуется продолжительностью существования во времени. Это обеспечивается преемственностью живых систем. В основе такого непрерывного существования во времени лежит способность биологических систем к самовоспроизведению. “Сохранение жизни в меняющихся условиях оказывается возможным благодаря эволюции живых форм, в процессе которой у них появляются изменения, обеспечивающие приспособление к новой среде обитания. Непрерывность существования и историческое развитие живой природы обусловлены двумя фундаментальными свойствами жизни: наследственностью и изменчивостью.”9Рассмотрим эти свойства более подробно. Наследственность. Что под этим подразумевается? На клеточном и организменном уровнях под наследственностью понимают способность биологических систем сохранять и передавать в процессе самовоспроизведения строение, особые функции, развитие. На популяционно-видовом уровне организации жизни наследственность проявляется в поддержании постоянного соотношения генетических форм в ряду поколений данного вида. На биоценотическом уровне– в обеспечении сохранения определённого соотношения видов организмов, которые образуют биоценоз. В ходе возникновения и развития жизни на земле наследственность играла огромную, решающую роль, так как закрепляла полезные изменения, происходящие в организме, таким образом, обеспечивая как бы консерватизм организации живых систем. Поэтому можно сделать вывод, что наследственность является одним из главных факторов эволюции. “Изменчивостью называется вся совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду.”10На уровне отдельных клеток и организмов изменчивость проявляется в возникновении отличий между ними, так как затрагивается их индивидуальное развитие (онтогенез). На популяционно-видовом уровне организации жизни это свойство проявляется в наличии генетических различий между отдельными представителями популяции вида. Благодаря этому появляются новые виды организмов, что вносит разнообразие, а так же изменения в межвидовые взаимоотношения в биоценозах. Изменчивость в определённом смысле отражает динамичность организации живых систем и тоже является решающим фактором эволюции.

“Несмотря на то что по своим результатам наследственность и изменчивость разнонаправлены, в живой природе эти два фундаментальных свойства образуют неразрывное единство, чем достигается одновременно сохранение в процессе эволюции имеющихся биологически целесообразных качеств и возникновение новых, делающих возможным существование жизни в разнообразных условиях.”11

7. Цитоплазматическое наследование

В начале XX в. было обнаружено, что в клетках имеется внехромосомный наследственный материал. Он располагается в различных цитоплазматических структурах и определяет собой особую цитоплазматическую наследственность. Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов даёт основание для специального рассмотрения их участия в формировании фенотипа в процессе индивидуального развития. Цитоплазматические гены не подчиняются законам Менделя о наследовании, которые определяются поведением хромосом при процессах: митозе, мейозе и оплодотворении. Так как образующийся вследствие оплодотворения организм получает цитоплазматические структуры вместе с яйцеклеткой, то цитоплазматическое наследование идёт по материнской линии. Этот тип наследования был впервые описан К. Корренсом в 1908 г. в отношении признака пёстрых листьев у некоторых растений (рисунок 2). Позднее было установлено, что развитие этого признака обуславливается мутацией, которая возникает в ДНК хлоропластов и нарушает в них синтез хлорофилла. Размножение в клетках нормальных (зелёных) и мутантных (бесцветных) пластид, их последующее затем случайное распределение между дочерними клетками приводят к появлению отдельных клеток, совершенно лишённых нормальных пластид. Потомство таких клеток и образует обесцвеченные участки на листьях. Таким образом, фенотип потомства зависит от фенотипа материнской особи, то есть у растения с зелёными листьями потомство будет абсолютно нормальным, потомство растения с бесцветными листьями будет такой же фенотип. Для клонирования это важно, так как при этом процессе ядро яйцеклетки заменяется ядром соматической клетки из ткани животного, и цитоплазматические гены должны запустить программу роста и развития этой клетки. Здесь решаются проблемы связанные с хромосомами.

8. Положения хромосомной теории

Термин хромосома был предложен в 1888г. немецким морфологом В. Вальдейером. Он применил этот термин для обозначения внутриядерных структур эукариотической клетки, которые хорошо окрашиваются основными красителями (от греческого хрома – цвет и сома – тело).

Представление о хромосомах как носителях комплексов генов было составлено наблюдения сцеплённого наследования родительских признаков друг с другом при передаче их из поколение в поколение. Такое сцепление признаков объяснили размещением соответствующих генов в хромосоме, которая является достаточно устойчивой структурой, сохраняющей состав генов в ряду поколений клеток и организмов.

Согласно хромосомной теории наследственности, совокупность генов, входящих в состав одной хромосомы, образует группу сцепления. Каждая хромосома уникальна по набору заключённых в ней генов. Поэтому число групп сцепления в наследственном материале организмов, принадлежащих к одному виду, определяется количеством хромосом в гаплоидном наборе их половых клеток. При оплодотворении образуется диплоидный набор, каждая группа сцепления которого представлена двумя видами – отцовской и материнской хромосомами, несущими разные наборы соответствующего комплекса генов.

Представление о линейном расположении генов в хромосомах возникло на основе нередко наблюдаемого процесса рекомбинации (взаимообмена) между материнским и отцовским комплексами генов, заключённых в гомологичных хромосомах. Установили, что частота рекомбинации характеризуется определённым постоянством для каждой пары генов и различна для разных пар. Это наблюдение дало возможность предположить связь частоты рекомбинации с последовательностью расположения генов в хромосоме.

Таким образом, была доказана роль хромосом как основных носителей наследственного материала в эукариотической клетке.

9. Роль ДНК в наследственности

В начале ХХ века Саттон и Бовери высказали верную мысль о том, что именно хромосомы передают генетическую одного поколения другому и сформулировали так называемую хромосомную теорию наследственности. “Согласно этой теории, каждая пара факторов локализована в паре гомологичных хромосом, причём каждая хромосома несёт по одному фактору. А так как число признаков у любого организма во много раз больше числа его хромосом, видимых в микроскоп, каждая хромосома должна содержать множество факторов. .”12В ряде экспериментов Альфред Мирский показал, что у особей одного вида все соматические клетки содержат

равное количество ДНК, которое вдвое больше количества ДНК в гаметах. То же самое относится и к содержанию в хромосомах белка, так что эти данные мало способствовали выяснению природы генетического материала.

В 1928 г. английский микробиолог Фредерик Гриффит поставил опыт. Во времена, когда антибиотики ещё не были известны, он пытался приготовить вакцину против пневмококка – возбудителя одной из форм пневмонии. Были известны две формы этой бактерии, одна из них обладает студенистой капсулой и вирулентна (вызывает заболевание), а другая не имеет этой капсулы и не вирулентна. Способность вызывать пневмонию и была, видимо, связана с наличием этой капсулы. Опыты по введению разных форм этих бактерий дали результаты, представленные в таблице 1.

“При вскрытии погибших мышей в них были обнаружены живые инкапсулированные формы. На основании этих результатов Гриффит сделал вывод, что от убитых нагреванием инкапсулированных форм к живым бескапсульным формам передаётся какой-то фактор, заставляющий их вырабатывать капсулы и становиться вирулентными.”13 Но природа этого трансформирующего фактора оставалась неизвестной до 1944 г., когда удалось выделить и идентифицировать его. Эвери, Мак-Карти и Мак-Лео установили, что удаление полисахаридной капсулы и белковой фракции из клеточных экстрактов не влило на способность трансформировать бескапсульные формы, но добавление фермента дезоксирибонуклеазы (ДНКазы), гидролизирующей ДНК, препятствовало трансформации. Способность высокоочищенных экстрактов ДНК из инкапсулированных клеток вызывать трансформацию показала, что фактором Гриффта была ДНК.

10. Химический состав хромосом

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс.

Как было доказано исследованиями, ДНК является носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию – своеобразную программу развития клетки и организма, записанную с помощью особого кода. Количество ДДНК в ядрах клеток организма данного постоянно и пропорционально их плоидности. В диплоидных соматических клетках организма её в два раза больше, чем в гаметах. Увеличение числа хромосомных наборов в полиплоидных клетках сопровождается пропорциональным увеличением количества ДНК в них.

Белки составляют значительную часть вещества хромосом. На них приходится около65% массы этих структур. Белки в хромосомах делятся на две группы: гистоны и негистоновые белки.

Помимо ДНК и белков в составе хромосом обнаружены РНК, липиды, полисахариды, ионы металлов.

РНК содержится во всех живых клетках в виде одноцепочечных молекул. Она отличается от ДНК тем, что содержит рибозу (вместо дезоксирибозы ДНК), а в качестве одного из пиримидиновых оснований – урацил (вместо тимина). Анализ РНК, содержащихся в клетке, показал, что существует три типа РНК, которые участвуют в синтезе белковых молекул. Во-первых, это матричная, или информационная, РНК (иРНК или иРНК), которая выполняет роль посредника при синтезе белков. Во-вторых, транспортная РНК (тРНК), которая является связующим звеном между триплетным кодом, содержащимся в мРНК, и аминокислотной последовательностью полипептидной цепи. И, в-третьих, рибосомная РНК (рРНК), которая находится в цитоплазме, где связана с белковыми молекулами, образуя вместе с ними клеточные органеллы – рибосомы. Все три типа РНК синтезируются непосредственно на ДНК, которая служит основой для этого процесса. Количество РНК в каждой клетке находится в прямой зависимости от количества вырабатываемого этой клеткой белка.

Данные, полученные экспериментами на самых разных организмах, показали, что процесс синтеза белка состоит из двух процессов, представленных на таблице 2.

11. Природа генов

В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позже их называли “факторами” и, наконец, генами. Было выяснено, что гены находятся в хромосомах, с которыми они и передаются из поколения в поколение. Если рассматривать ген как единицу мутации, то ему можно дать такое определение: “Ген – это наименьший участок хромосомы, который может быть отделён от примыкающих к нему участков в результате кроссинговера”14. “Кроссинговер – обмен генетическим материалом между гомологичными хромосомами”15. Если же рассматривать процесс мутирования, то геном можно назвать “наименьший участок хромосомы, способный претерпеть мутацию”16.

12. Способы клонирования.

Как уже говорилось выше, получение идентичных потомков при помощи бесполого размножения называется клонированием. Этот метод возник в результате попыток доказать, что ядра зрелых клеток, которые закончили своё развитие, содержат всю информацию, необходимую для кодирования всех признаков организма, специализация каждой клетки обусловлена включением определённых генов или их выключением, а не утратой некоторых из них. Первый успех был достигнут профессором Корнельского университета Стюардом. Он доказал, что, выращивая отдельные клетки съедобной части моркови в среде, содержащей нужные питательные вещества и гормоны, можно индуцировать процессы клеточного деления, приводящие к образованию новых клеток моркови.

“Первым, кто доказал возможность искусственного получения близнецов, был немецкий эмбриолог Дриш. Разделив клетки двуклеточного зародыша морского ежа, он получил два генетически идентичных организма.
Первые успешные опыты по трансплантации ядер клеток тела в яйцеклетку осуществили в 1952 году Бриге и Кинг, проводившие опыты с амебами. А в 1979 году англичанин Виладсен разработал метод получения однояйцевых близнецов из эмбрионов овцы и коровы. Однако развития эмбрионов добиться не удалось”17. А в 1976 году Дж. Гердон доказал возможность клонирования на лягушках. Однако лишь в 1983 году учёным удалось получить серийные клоны взрослых амфибий (рисунок 3).

Как же, вопреки строгой закономерности, можно заставить клетку развиваться только с материнским диплоидным набором хромосом? Теоретически решение этой проблемы возможно двумя способами: хирургическим и “терапевтическим”.

Хронологически второй метод изобретён намного раньше. Сто лет назад зоолог Московского университета А. А. Тихомиров открыл, что яйца тутового шелкопряда под воздействием различных химических и физических реакций могут развиваться без оплодотворения. Такое развитие было названо партеногенезом. Но оно рано останавливалось: партеногенетические эмбрионы погибали ещё до вылупления личинок из яиц.

Б. Л. Астауров в 30-е годы в результате длительных исследований подобрал термическое воздействие, которое одновременно блокировало стадию мейоза, то есть превращение диплоидного ядра яйцеклетки в гаплоидный, и активировало неоплодотворённое яйцо к развитию. С ядром, оставшимся диплоидным, развитие заканчивалось вылуплением личинок, повторяющих генотип матери, включая пол.

Клонировать млекопитающих можно, как упоминалось, и другим способом – хирургическим. Он основан на замене гаплоидного ядра яйцеклетки на диплоидное ядро, взятое из клеток эмбрионов. Эти клетки ещё не дифференцированы, то есть не началась закладка органов, поэтому их ядра легко заменяют функцию диплоидного ядра только что оплодотворённой клети. Таким методом в США (1952) У. Р. Бриггс и Т. Дж. Кинг, в Англии Д. Б. Гордон (1960) получили генетические копии лягушки, а в 1997 году шотландец И. Уилмут получает хирургическим путём знаменитую овцу Долли (рисунок 4) – генетическую копию матери. Для этого из клеток её вымени было взято ядро для пересадки в яйцеклетку другой овцы. Успеху способствовало то, что взамен инъецирования нового ядра применялись воздействия, приводящие к слиянию лишённой ядра яйцеклетки с обычной неполовой клеткой. После этого яйцеклетка с заменённым ядром развивалась как оплодотворённая. Очень важно, что этот метод позволяет взять ядро клонируемой особи в зрелом возрасте, когда уже известны её важные для человека хозяйственные признаки. Но у Долли были не слишком удачные предшественники. Её создатель, Ян Уилмут, произвёл 277 ядерных трансплантаций: получил 277 эмбрионов, из которых только 29 прожили дольше шести дней, и один из которых развился в полноценного ягнёнка, названного Долли.

“Профессор Нейфах и его коллеги из Института биологии развития Российской недавно скопировали каспийского осетра. Технология тут примерно такова. В клетке осетра убивают ядро, на его место вводят два сперматозоида и тепловым ударом заставляют их слиться воедино. Процесс слияния был необходим затем, чтобы удвоить набор хромосом в спермии. Далее уже все определяется умением задействовать сложные внутренние связи и, в конце концов, "выходить" зародыш, создав ему благоприятные условия. Основной аргумент российских биологов - они пытаются спасти каспийского осетра как вид. По размерам искусственные осетры, правда, пока не дотягивают до нормы, но, как утверждают исследователи, это уже технические трудности”18.

“А ученые из университета штата Висконсин опробовали новую методику клонирования млекопитающих, отличную от той, что применялась учеными из Рослингского института, вырастившими Долли. В качестве основного исходного материала новаторы использовали яйцеклетку коровы. Ее лишали так называемого генетического кода и имплантировали молекулы ДНК других клонируемых животных - свиньи, крысы, овцы или обезьяны. При этом источником наследственного материала служили клетки тканей взрослых особей, взятые, например, из свиного или крысиного уха. После искусственного оплодотворения из коровьей яйцеклетки, получившей новую генетическую информацию, развивался зародыш другого млекопитающего - копия генетического донора. Таким образом, ученым удалось благополучно вырастить в лабораторных условиях эмбрионы свиньи, крысы, овцы, обезьяны да и самой коровы.
Специалисты из Висконсинского университета уверены, что их исследования имеют важное значение для развития генной инженерии и изучения возможностей генетического донорства. Руководители этих работ Нил Ферст, одним из первых в США приступивший к опытам по клонированию коров, и Таня Доминко полагают, что использованная ими методика в будущем сможет помочь сохранению исчезающих и редких видов животных.”19.

Учтя опыт шотландцев, американцы несколько изменили метод клонирования, использовав ядра эмбриональных (зародышевых) фибробластов – клеток, дающих соединительную ткань, взятых из взрослого организма. Таким образом, они резко увеличили эффективность метода, а также облегчили задачу введения “чужого” гена, так как в культуре фибробластов это сделать значительно легче.

Сейчас перед людьми не стоит вопроса: “Клонировать или нет?” Конечно клонировать. Благодаря этому открываются новые возможности. Например, в сельском хозяйстве можно получить высоко продуктивных животных или животных с человеческими генами. А также клонирование органов и тканей – задача номер один в траспланталогии. Стоит другой вопрос: “Разрешить ли клонирование человека?” С одной стороны это возможность бездетных людей иметь своих собственных детей, а с другой – возможность получения новых Наполеонов и Гитлеров, а также получение клонов для последующего использования их в качестве доноров необходимых органов.

Вопрос клонирования человека остаётся открытым!!

Список используемой литературы:

  1. Н. Грин, У Стаут, Д. Тейлор “Биология 3”, Москва “Мир” 1993
  2. “Биология 1”, Москва “Высшая школа” 1999
  3. журнал “Весь мир” №12 (02.1998)
  4. интернет www. intellectualcapital.ru/iss2-6/icissue6.htm
  5. интернет www.intellectualcapital.ru/iss2-6/icinterv6.htm
  6. интернет www.gssmp.sci-nnov.ru/medfarm/fom/150/klon/html
  7. интернет www.adventure.df.ru/project/klon/klon_3.htm
  8. журнал “Природа”, 07.1998