Общая биология – дисциплина, изучающая основные закономерности возникновения и развития жизни на земле

Скачать реферат: Общая биология – дисциплина, изучающая основные закономерности возникновения и развития жизни на земле

Содержание  реферата

Введение
1. Классификация биологических наук
2. Связь биологии с соседними науками
   а) биохимия
   б) биология и математика
   в) биология и сельскохозяйственные науки
   г) биология и медицина
3. Уровни организации живой материи
   а) молекулярный уровень
   б) клеточный уровень
   в) организменный уровень
   г) биоценотический и биосферный уровни
4. Заключение
Список использованной литературы

Введение

Открываемые и изучаемые биологией закономерности - важная составная часть современного естествознания. Они служат основой медицины, сельскохозяйственных наук, лесного хозяйства, звероводства, охотничьего и рыбного хозяйства.
Использование человеком богатств органического мира строится на принципах, вскрываемых биологией. Данные биологии, относящиеся к ископаемым организмам, имеют значение для геологии. Многие биологические принципы применяют в технике. Использование атомной энергии, а также космические исследования потребовали создания и усиленного развития радиобиологии и космической биологии.
Только на основе биологических исследований возможно решение одной из самых грандиозных задач, вставших перед человечеством, - планомерной реконструкции биосферы Земли с целью создания оптимальных условий для жизни увеличивающегося населения планеты.

1. Классификация биологических наук

Многоплановость системы биологических наук объясняется многообразием проявлений жизни и разнообразием форм и методов исследования живых объектов. Одними из первых в биологии сложились науки: о животных - зоология и растениях - ботаника, а также анатомия и физиология человека - основа медицины.
Крупными разделами биологии являются: микробиология - наука о микроорганизмах и гидробиология - наука об организмах, населяющих водную среду. В пределах крупных разделов биологии сформировались более узкие дисциплины.
Существует также классификация биологических дисциплин по исследуемым свойствам и проявлениям живого. Форму и строение организмов изучают морфологические дисциплины; образ жизни животных и растений и их взаимоотношения с условиями внешней среды - экология; различные функции живых существ изучает физиология животных и физиология растений; предметом генетики является изучение закономерностей наследственности и изменчивости. Каждая из этих крупных дисциплин, в свою очередь, делится на ряд более частных.
По изучаемому структурному уровню живого различают молекулярную биологию, затем учение о клетке, или цитологию, учение о тканях, или гистологию, учение об органах, или органологию.
По преобладающим методам различают описательную (например, морфологию), экспериментальную (например, физиологию) и теоретическую биологию.

2. Связь биологии с соседними науками

В самых разных областях биологии (в таксономии, морфологии, физиологии, генетике и др.) все возрастает значение пограничных дисциплин, связывающих биологию с соседними науками - биохимией и биофизикой.

А) Биохимия

Биологическая химия, или биохимия, называемая также физиологической химией, изучает химический состав организмов и химические превращения, происходящие в процессе жизнедеятельности человека, животных, растений и микроорганизмов. Совокупность этих превращений составляет биологический обмен веществ, лежащий в основе формы движения материи, называемой жизнью.
Уже со времен глубокой древности люди были знакомы со многими биохимическими процессами, лежащими в основе различных производств: хлебопечении, сыроварении, виноделии, выделке кож и т. д. Стремление повысить урожайность полей и использовать различные растения для изготовления пищи, лекарств, красок, тканей, пряностей приводило к необходимости изучать составные части растений и влияние различных веществ на их развитие и рост. Борьба с болезнями приводила к необходимости изучать процессы, происходящие в теле здорового и больного человека, а также влияние на него различных целебных средств.
В древности и Средневековье сведения о составе организмов и о происходящих в них процессах были весьма ограничены. В Средние века начинается применение химических методов к изучению растений, животных и человека. Со второй половины ХV в., с эпохи Возрождения, на основе развития экспериментальной химии начинается изучение химического состава организмов и происходящих в них превращений веществ. Открытие в 1748 г. М. В. Ломоносовым закона сохранения веществ и движения явилось началом новой эры в науке, началом внедрения точных количественных методов в естествознании вообще и в химии и физиологии в частности.
Дальнейшее внедрение химии в биологию привело в конце XIX в. к обособлению и развитию биологической химии как самостоятельной научной дисциплины. Она развивалась на основе успехов органической химии, расширения круга изучаемых ею природных веществ и усовершенствования методов синтеза органических соединений. Само название - биологическая, или физиологическая химия - отражает специфику этой науки. Поскольку в основе всех проявлений жизнедеятельности, всех функций организма лежит обмен веществ, биохимия - один из важнейших разделов науки о жизни - биологии. Как по своему историческому развитию, так и по существу своего содержания и применяемых методов, биологическая химия теснейшим образом связана с физиологией - наукой, изучающей закономерности явлений жизни.
Биохимия изучает отдельные этапы процессов обмена веществ, их взаимосвязь и взаимообусловленность, физиологическую роль отдельных веществ в жизни организмов, процесс биосинтеза сложного органического вещества из простейших веществ, а также биохимические превращения растительных и животных остатков (образование илов, торфа, минерализацию органических остатков).
Крупнейшей проблемой современной биохимии является вопрос о связи процессов обмена веществ с теми или иными физиологическими функциями организма. Исследование биохимических превращений в организме должно быть неразрывно связано с выяснением условий, при которых возникает и развивается та или иная физиологическая функция. Это направление в современной биохимии получило название функциональной биохимии.
Развитие органического мира, наследственность, изменчивость, образование новых видов - все эти основные проблемы биологической науки могут быть изучены и подчинены воле человека только на основе глубоких биохимических исследований, выяснения закономерностей обмена веществ и сдвигов, происходящих в нем под влиянием внутренних условий и условий внешней среды.
В процессе развития науки острая борьба развертывалась в свое время вокруг вопроса о возможности синтеза различных органических соединений чисто химическими методами. Идеалисты утверждали, что подобные соединения могут быть синтезированы только в организмах животных и растений. Однако вскоре химики синтезировали вне организма многие соединения, играющие важную роль в обмене веществ, такие, как сахара, мочевина, жиры и др. Основой для синтезов подобного рода послужила теория органических соединений, созданная великим русским химиком Бутлеровым. На этой основе было синтезировано множество самых разнообразных соединений, начиная с простейших спиртов, кислот, эфиров и т. п. и кончая такими, как углеводы, витамины, минеральные вещества и др.
Химики-органики и биохимики осуществили полный химический синтез одного из простейших белков - инсулина - гормона, выделяемого поджелудочной железой человека и животных, а также фермента рибонуклеоды и нуклеиновых кислот. Замечательные успехи были достигнуты за последние годы в расшифровке структуры нуклеиновых кислот и роли дезоксирибонуклеиновой кислоты (ДНК) как "вещества наследственности". Было установлено, что определенные участки молекулы ДНК содержат гены, в которых "записана" (закодирована) программа для синтеза в организме тех или иных белков и нуклеиновых кислот.
Вслед за американским химиком Г. Корана с сотрудниками, которые впервые синтезировали гены, кодирующие биосинтез некоторых рибонуклеиновых кислот, были осуществлены синтезы различных генов. Так, например, произведен химический синтез гена, кодирующего биосинтез такого важного белка, как интерферон, - белка, защищающего человека от вирусных инфекций и некоторых форм рака. В результате всех этих исследований открываются исключительные перспективы для расшифровки молекулярных механизмов наследственности и применения результатов фундаментальных исследований в медицине, сельском хозяйстве и различных отраслях промышленности.
Биохимия имеет большое практическое значение для медицины, сельского хозяйства и ряда отраслей промышленности. Исключительно важная роль биохимических процессов во многих отраслях промышленности, занимающихся переработкой сырья растительного или животного происхождения, необходимость научного обоснования и усовершенствования технологии привели к созданию технической биохимии, включающей биохимию зерна и хлебопечения, виноделия, чайного производства и т. д.
Биохимия растений, изучающая химический состав растительных организмов и протекающие в них биохимические процессы, имеет большое значение для растениеводства и ряда отраслей пищевой промышленности. Ее значение для растениеводства заключается прежде всего в том, что изучение процессов обмена веществ у растений позволяет управлять развитием растительных организмов. Установление в растениях закономерностей синтеза углеводов, белков, жиров, витаминов, алкалоидов и других соединений дает возможность создавать для соответствующих сельскохозяйственных культур условия, обеспечивающие получение наибольшего количества данного вещества. Направленное изменение биохимическими методами обмена веществ приводит к созданию новых форм растительных организмов, наиболее ценных в хозяйственном отношении.
Селекция новых сортов многих растений целиком основана на применении биохимических методов, с помощью которых определяют содержание в данном сорте того или иного вещества: белка, сахара, масла, крахмала, витаминов и т. д. При этом особое значение имеет разработка новых, быстрых и вместе с тем достаточно точных экспресс-методов количественного определения в растительном сырье того или иного вещества.
Сложной и ответственной задачей, стоящей перед биохимией растений, является глубокое изучение обмена веществ у растений и отдельных их органов - семян, клубней и т. д., а также влияние на него различных факторов внешней среды. Это имеет большое значение для понимания тех процессов обмена веществ в хранящемся растительном сырье (зерне, плодах или овощах), от которых зависят стойкость данного сырья во время хранения и величина потерь. Велика роль биохимии в усовершенствовании технологических процессов пищевой промышленности и создании новых схем и принципов переработки пищевого сырья растительного происхождения.
В каждой из отраслей пищевой промышленности ведется большая исследовательская работа, в которой существенную роль играют биохимики. Благодаря глубоким биохимическим исследованиям ученых удалось весьма существенно рационализировать многие технологические процессы, а некоторые отрасли промышленности создать совершенно заново. В табачной промышленности в течение длительного времени ферментация табака производилась лишь в строго определенное время года, когда температурные условия позволяли осуществить этот важный процесс сырьевой обработки табака. Профессор А. И. Смирнов на основе глубокого изучения биохимических процессов, протекающих во время ферментации, а также условий, способствующих осуществлению этих процессов, разработал совершенно новый метод внесезонной ферментации табака.
Внесезонная ферментация дала табачной промышленности чрезвычайно большую экономию. Примером важности биохимических исследований для усовершенствования технологических процессов в пищевой промышленности служат также работы в области биохимии чайного производства.
Была вскрыта сущность биохимических процессов, протекающих во время переработки чайного листа, и их влияние на качество готовой продукции. На основе этих исследований удалось усовершенствовать технологию чайного производства и внедрить на чайных фабриках систему биохимического контроля, дающую возможность получать чай более высокого качества. Не менее существенна роль биохимических процессов в таких отраслях пищевой промышленности, как мукомольная, хлебопекарная, витаминная, консервная, винодельческая, пивоваренная, спирто-водочная.
Витаминная промышленность - это отрасль, полностью основывающаяся на биохимии как в изыскании сырьевых ресурсов, так и в технологии, а также применении витаминов. В консервной промышленности весьма нежелательными являются некоторые биохимические процессы, приводящие к разрушению витаминов и ухудшению потребительских достоинств продукта. Ряд технологических приемов, применяемых при консервировании, направлен именно на предотвращение подобного рода процессов.
Чрезвычайно тесно связаны с биохимией все отрасли пищевой промышленности, основанные на использовании различных видов брожения. Весьма характерно, что ведущий цех современного завода шампанских вин носит название биохимического.
Следовательно, роль биохимии в ряде отраслей пищевой промышленности, занимающихся переработкой растительного сырья, весьма существенна.

Б) Биология и математика

Биология и математика - что может быть общего у этих столь различных областей знания? Математика - абстрактная наука о числах с ее интегралами, дифференциалами, матрицами и множествами, биология - наука о жизни во всем многообразии ее проявлений: от субклеточных и клеточных структур до популяций и биогеоценозов. Совершенно ясно, что специфика и многообразие живой природы таковы, что никакие математические построения отразить их не в состоянии.
Большинство ученых до начала XX в. считали, что между биологией и математикой лежит если не пропасть, то, по крайней мере, труднопреодолимая преграда. Правда, отдельные физики и математики делали попытки в этом направлении. Это и Леонардо да Винчи, рассмотревший в рамках еще зарождавшейся в XV-XVI вв. механики движение животных, и выдающийся математик XVIII в. Л. Эйлер, создавший математическую модель сердца. Более близки по времени к нам работы по физиологии зрения и слуха знаменитого физика XIX в. Г. Гельмгольца. Однако во всех этих случаях биологическая основа рассматривалась учеными лишь как повод для разработки новых математических методов. Но еще в XIX в. биология начала превращаться из науки наблюдательной в науку экспериментальную.
До середины XIX в. ученые-естествоиспытатели были, по сути дела, натуралистами. Своей основной задачей они считали наблюдение за живыми организмами, описание и систематизацию всего их многообразия. По мере решения этих задач биологи все глубже и интенсивнее вторгались в область эксперимента. В результате было накоплено большое количество фактов той степени точности и абстрактности, которая допускает применение математического аппарата. Первоначально биологи применяли в основном методы математической статистики для обработки результатов своих экспериментов.
Следствием этого было создание целого научного направления - биометрии. В дальнейшем биометрическое направление существенно преобразилось, что связано с более широким распространением методов многомерных статистик. Сейчас математическая статистика используется как средство, позволяющее корректно спланировать эксперимент и получить с наименьшими затратами труда и средств достоверную количественную информацию об изучаемом объекте. Теоретической основой для такого подхода стала новая отрасль статистики - теория планирования оптимального эксперимента.
И все же, хотя эта теория и позволяет получать количественные зависимости между изучаемыми явлениями, такие модели большей частью оказываются формальными и дают возможность скорее управлять процессами, чем познавать их механизмы. Более содержательны такие математические модели, которые отражают структуру и внутренние связи исследуемых процессов и явлений, раскрывают их движущие силы и законы функционирования.
Одним из первых приемов именно такого подхода к применению математики в биологии оказалась генетика. Уже работы основоположника этой науки Г. Менделя стали прекрасной иллюстрацией того, каким плодотворным может быть применение математических идей для проникновения в самую суть биологических явлений. Сформулированные на строгом математическом уровне, законы наследования Г. Менделя лежат в основе современной генетики, являющейся, пожалуй, наиболее математизированной из всех биологических дисциплин.
В ХХ в. началось бурное вторжение математических методов и идей в биологические исследования. На службу биологии "приняты" и алгебра, и теория вероятностей, и математическая статистика, и дифференциальное и интегральное исчисление, и теория конечных результатов. С полным основанием можно говорить о возникновении особой отрасли биологической науки - математической биологии.

В) Биология и сельскохозяйственные науки

Тесно и широко взаимодействует биология с сельскохозяйственными науками.
Человек, как гетеротрофный организм, неспособен усваивать солнечную энергию, поступающую на Землю. Необходимые для питания белки, жиры, углеводы, витамины человек получает в основном от культурных растений и прирученных животных. Знание законов генетики и селекции, а также физиологических особенностей культурных видов позволяет совершенствовать агротехнику и зоотехнику, выводить более продуктивные сорта растений и породы животных. Уровень знаний в области биогеографии и экологии определяет возможность и эффективность интродукции и акклиматизации полезных видов, борьбы с вредителями посевов, с паразитами сельскохозяйственных животных.
Биохимические исследования позволяют полнее использовать получаемые органические вещества растительного и животного происхождения. Разработка новых методов селекции, теории гетерозиса, получение организмов с заранее заданными свойствами, совершенствование методов биологической борьбы с вредителями, перевод лесного хозяйства, звероловства, промыслов (охоты, рыболовства) на научную основу - эти и многие другие задачи могут быть решены только при активном сотрудничестве биологов разных специальностей с практиками сельского хозяйства, лесного дела, охотоведами, звероводами и др.

Г) Биология и медицина

Очень тесно биология связана и с медициной. Успехи и открытия биологии определили современный уровень медицинской науки. Дальнейший прогресс медицины также основан на развитии биологии. Представления о макро- и микроскопическом строении человеческого тела, о функциях его органов и клеток опираются на биологические исследования. Гистологию и физиологию человека, которые служат фундаментом медицинских дисциплин - патанатомии, патофизиологии и других, изучают как медики, так и биологи. Учение о причинах и распространении инфекционных болезней и принципах борьбы с ними основано на микробиологических и вирусологических исследованиях.
Представления о механизмах иммунитета, лежащего в основе сопротивляемости организма инфекциям, также опираются на биологические исследования. Особое значение для медицины играет исследование тканевой несовместимости - главного препятствия для пересадки органов и тканей. Подлинная революция в лечении инфекционных заболеваний, служивших в прошлом основной причиной смертности, связана с открытием антибиотиков. Использование в медицине веществ, выделяемых микроорганизмами для борьбы друг с другом, - крупнейшая заслуга биологии ХХ в. Массовое производство дешевых антибиотиков стало возможным лишь после выведения высокопродуктивных штаммов продуцентов антибиотиков, достигнутого методами современной генетики.
Над проблемой рака единым фронтом работают цитологи, эмбриологи, генетики, биохимики, иммунологи, вирусологи.
Генетика человека, в том числе медицинская генетика, изучающая наследственно обусловленные заболевания, становится сейчас важным объектом медико-биологических исследований. Уже поддаются точному диагнозу болезни, связанные с нарушением числа хромосом. Генетический анализ позволяет обнаруживать у человека вредные мутации. Борьба с ними ведется путем лечения и медико-генетических консультаций и рекомендаций. Все большее внимание привлекает проблема психического здоровья человечества, решение которой невозможно без глубокого естественно-исторического биологического анализа нервной деятельности, ведущего в психике. Выделение среди биологических дисциплин этологии - науки о поведении - существенно приближает решение этой сложнейшей и важнейшей проблемы.

3. Уровни организации живой материи

Для живой природы характерно сложное, иерархическое соподчинение уровней организации ее структур. Вся совокупность органического мира Земли вместе с окружающей средой образует биосферу, которая складывается из биогеоценозов - областей с характерными природными условиями, заселенными определенными комплексами (биоценозами) организмов. Биоценозы состоят из популяций - совокупностей животных и растительных организмов одного вида, живущих на одной территории. Популяция состоит из особей. Особи многоклеточных организмов состоят из органов и тканей, образованных различными клетками. Клетки, как и одноклеточные организмы, состоят из внутриклеточных структур, которые строятся из молекул. Для каждого из выделенных уровней характерны свои закономерности, связанные с различными масштабами явлений, принципами организации, особенностями взаимоотношения с выше- и нижележащими уровнями. Каждый из уровней организации жизни изучается соответствующими отраслями современной биологии.

А) Молекулярный уровень

На молекулярном уровне биохимией, биофизикой, молекулярной биологией, молекулярной генетикой, цитохимией, вирусологией, микробиологией изучаются физико-химические процессы, осуществляющиеся в живом организме. Исследования живых систем на этом уровне показывают, что они состоят из низко и высокомолекулярных органических соединений, практически не встречающихся в неживой природе. Наиболее специфичны для жизни такие биополимеры, как белки, нуклеиновые кислоты и полисахариды, а также липиды (жироподобные соединения) и составные части их молекул (аминокислоты, нуклеотиды, простые углеводы, жирные кислоты и др.).
На молекулярном уровне изучают синтез и репродукцию, распад и взаимные превращения этих соединений в клетке, происходящий при этом обмен веществами, энергией и информацией, регуляцию этих процессов. Изучено строение ряда белков и некоторых нуклеиновых кислот, а также многих простых органических соединений. Показано, что химическая энергия, освобождающаяся в ходе биологического окисления (гликолиз, дыхание), запасается в виде богатых энергией соединений, в основном аденозинфосфорных кислот (АТФ и др.) и в дальнейшем используется в требующих притока энергии процессах (синтез и транспорт веществ, мышечное сокращение и др.).
Крупный успех биологии - открытие генетического кода. Наследственные свойства организма "записаны" в молекулах дезоксирибонуклеиновой кислоты (ДНК), четырьмя видами чередующихся в определенной последовательности мономеров - нуклеотидов. Способность молекул ДНК удваиваться обеспечивает их воспроизведение в клетках организма и наследственную передачу от родителей к потомкам.
Биологические исследования на молекулярном уровне требуют выделения и изучения всех видов молекул, входящих в состав клетки, выяснения их взаимоотношений друг с другом. Для разделения макромолекул используются их различия в плотности и размерах (ультрацентрифунгирование), зарядах (электрофорез), адсорбционных свойствах (хромостография). Взаимное пространственное расположение атомов в сложных молекулах изучают методом рентгеноструктурного анализа. Пути превращения веществ, скорости их синтеза и распада исследуют путем введения соединений, содержащих радиоактивные атомы.

Б) Клеточный уровень

При переходе к исследованию клеточных структур, состоящих из определенным образом подобранных и ориентированных молекул, биология поднимается на следующий уровень организации жизни - клеточный. На этом уровне цитология, гистология и их разделы, а также многие разделы вирусологии, микробиологии и физиологии изучают строение клетки и внутриклеточных компонентов, а также связи и отношения между клетками в разных тканях и органах. Клетка - основная самостоятельно функционирующая единица структуры многоклеточного организма. Многие организмы (бактерии, водоросли, грибы, простейшие) состоят из одной клетки, точнее, являются бесклеточными. Свойства клетки определяются ее компонентами, осуществляющими различные функции. В ядре находятся хромосомы, содержащие ДНК и ответственные за сохранение и передачу дочерними клетками наследственных свойств.
Энергетический обмен в клетке - дыхание, синтез АТФ и пр. - происходит в митохондриях. Поддержание химического состава клетки, активный транспорт веществ в нее и из нее, передача нервного возбуждения, форма клеток и характер их взаимоотношений определяются структурой клеточной оболочки. Совокупность клеток одного типа образует ткань, функционирующее сочетание нескольких тканей - орган. Исследованиями на клеточном уровне выяснены основные компоненты клетки, строение различных клеток и тканей и их изменения в процессах развития.
При изучении клеток в световом микроскопе, позволяющем видеть детали порядка 1 мкм, для большей контрастности изображения применяют разные методы фиксации, приготовления тонких прозрачных срезов, их окраски. Электронная микроскопия позволяет различать очень мелкие структуры, вплоть до макромолекул, хотя описание их строения часто затруднено из-за недостаточной контрастности изображения. Функции внутриклеточных компонентов изучают, выделяя их из разрушенных клеток осаждением в центрифугах с различными скоростями вращения. Свойства клеток исследуют также в условиях длительного культивирования их вне организма.

В) Организменный уровень

На уровне целого организма изучают процессы и явления, происходящие в особи и определяющие согласованное функционирование ее органов и систем. Этот уровень исследуют физиология, эндокринология, иммунология, эмбриология и многие другие отрасли биологии. На этом уровне изучают также механизмы работы органов и систем, их роль в жизнедеятельности организма, взаимные влияния органов, нервную, эндокринную регуляцию их функций, поведение животных, приспособительные изменения и т. д. В организме функции разных органов связаны между собой: сердце - с легкими, одних мышц с другими и т. д.
В значительной мере эта взаимосвязь частей организма определяется функцией желез внутренней секреции. Так, поджелудочная железа и надпочечники через гормоны - инсулин и адреналин - регулируют накопление гликогена в печени и уровень сахара в крови. Эндокринные железы связаны друг с другом по принципу обратной связи - одна железа (например, гипофиз) активирует функцию другой (например, щитовидной железы), в то время как та подавляет функцию первой. Такая система позволяет поддерживать постоянную концентрацию гормонов и тем самым регулировать функцию всех органов, зависящих от этих желез.
Еще более высокий уровень интеграции обеспечивается нервной системой с ее центральными отделами, органами чувств, чувствительными и двигательными нервами. Посредством нервной системы организм получает информацию от всех органов и от внешней среды; эта информация перерабатывается центральной нервной системой, регулирующей функции органов и систем и поведение организма. Среди применяемых на этом уровне методов широкое распространение получили электрофизиологические методы. Исследование высшей нервной деятельности животных и человека включает ее моделирование, в том числе с применением кибернетики.
На популяционно-видовом уровне соответствующие отрасли биологии изучают элементарную единицу эволюционного процесса - популяцию, т. е. совокупность особей одного вида, населяющую определенную территорию и в большей или меньшей степени изолированную от соседних таких же совокупностей. Подобная составная часть вида способна длительно существовать во времени и пространстве, самовоспроизводиться и трансформироваться. В ряду поколений протекает процесс изменения состава популяции и форм входящих в нее организмов, приводящий в итоге к видообразованию и эволюционному прогрессу.
Единство популяции определяется потенциальной способностью всех входящих в ее состав особей скрещиваться, а значит - и обмениваться генетическим материалом. Половое размножение, характерное для большинства обитателей Земли, обеспечивает как общность морфо-генетического строения всех членов популяции, так и возможность многократного увеличения генетического разнообразия.
Для организмов, размножающихся бесполым путем (посредством вегетативного размножения), морфологическое единство популяций определяется общностью их генетического состава. Изучение состава и динамики популяции неразрывно связано и с молекулярным, и с клеточным, и с организменным подходами.

Г) Биоценотический и биосферный уровни

На биогеоценотическом и биосферном уровнях объектом изучения биогеоценологии, экологии, биогеохимии и других отраслей биологии служат процессы, протекающие в биогеоценозах (экосистемах) - элементарных структурных и функциональных единицах биосферы. Каждая популяция существует в определенной среде и составляет часть многовидового сообщества - биоценоза, занимающего определенное место обитания - биотип. В этих сложных комплексах живых компонентов первичными продуцентами органического вещества служат фотосинтезирующие растения и хемосинтезирующие бактерии. Биогеоценозы - это те "блоки", в которых протекают вещественно-энергетические круговороты, вызванные жизнедеятельностью организмов и в сумме составляющие большой биосферный круговорот. Обмен веществ между биогеоценозами осуществляется в газообразной, жидкой, твердой фазах. С биогеохимической точки зрения, миграции вещества в целях биогеоценозов могут рассматриваться как серии сопряженных процессов рассеивания и концентрирования вещества в организмах, почвах, водах и атмосфере.
Важное практическое значение приобрело во второй половине ХХ в. изучение биологической продуктивности биогеоценозов. Необходимость самостоятельного изучения биогеоценотического уровня организации живого обуславливается тем, что биогеоценозы - среда, в которой протекают любые жизненные процессы на нашей планете. На этом уровне проводятся комплексные исследования, охватывающие взаимоотношения входящих в биогеоценозы компонентов, выясняющие миграции живого вещества в биосфере, пути и закономерности протекания энергетических круговоротов. Такой широкий подход, дающий возможность предвидеть последствия хозяйственной деятельности человека, получает распространение и в форме Международной биологической программы, призванной координировать усилия биологов многих стран.
Концентрация биологических исследований по уровням организации живого предполагает взаимодействие различных отраслей биологии, что обогащает смежные науки новыми идеями и методами.

4. Заключение

Биология представляет собой огромную совокупность множества фактов и теорий о живых организмах. Чтобы как-то упорядочить этот необозримый материал, обычно принято отделять изучение растений от изучения животных или рассмотрение структуры организма от исследования его функций. Но поскольку у растений и животных, несмотря на все различия, есть очень много общего, то лучше подразделять биологию в соответствии с различными уровнями организации живого. Первые биологи занимались изучением целых организмов. Изобретение микроскопа и его применение подготовили почву для появления клеточной теории. Усовершенствование электронного микроскопа и разработка методов фиксации тканей и ультратонких срезов привели к открытию уровня субклеточной организации. Быстрое развитие химических и физических методов, которые привели к расшифровке генетического кода и процессов синтеза специфических белков, составили область молекулярной биологии. Высший уровень организации биологических систем - это уровень популяций и их взаимоотношений с окружающей средой.
Результаты исследований биологов используются во многих областях знаний, прежде даже весьма далеких от биологии. Так, широко используется микробиология для получения новых высокоэффективных лекарственных соединений, для разработки рудных месторождений с помощью микроорганизмов.
В последние сто лет биология развивалась поистине поразительными темпами. За это время сформировались такие ее разделы, как цитология, генетика, теория эволюции, биохимия, биофизика, экология. Открытия в области химии, физики и других наук дали толчок развитию биологии, и наоборот.

Список литературы

1. Биохимия растений. М.: Высшая школа, 1986.
2. Дромашко С. Е. Биология и математика. Минск, "Наука и техника", 1986.
3. Биология. М.: "Мир", 1974.
4. Основы общей биологии. М.: "Мир", 1982.
5. Фукс-Киттовский К. Проблемы детерминизма и кибернетики в молекулярной биологии. М.: "Прогресс", 1980.