Календарь
Ноябрь
Пн   6 13 20 27
Вт   7 14 21 28
Ср 1 8 15 22 29
Чт 2 9 16 23 30
Пт 3 10 17 24  
Сб 4 11 18 25  
Вс 5 12 19 26  

Проблема русской национальной школы и изучение русской математики



Скачать: Проблема русской национальной школы и изучение русской математики

Содержание реферата

Введение

1. Леонтий Филиппович Магницкий и его "Арифметика"

2. Задачи и загадки

2.1. Задачи - шутки, задачи - загадки

2.2. Затруднительные ситуации

Литература

Введение

Проблема русской национальной школы наиболее важная и ее решение имеет первостепенное значение для всего нашего общества, так как речь идет о судьбе настоящего и будущих поколений нашей страны, их воспитания и духовного формирования, так как наши молодые современники должны не только обладать должным объемом знаний, но они должны стать зрелыми духовно и интеллектуально.

Бытовой материализм продолжает все больше довлеть над обществом и человеком, вытесняя важнейшие проблемы воспитания, что приводит к жизненным противоречиям. Отсюда - острая необходимость в национальной школе, которая в состоянии будет взращивать в молодом поколении качества во все времена отличавшие русский характер: доброта, открытость, достоинство, сострадание, благородство

Русская национальная школа призвана заботиться о формировании психологии ребенка, воспитании его в духе братской любви ко всем людям, школа обязана научить молодых людей умению различать зло, коренящееся в сердце человека.

Существует две тенденции для осмысления уроков в национальной школе :

1) Оптимистическая , то есть российские мыслители всегда обращали свое внимание на образование как на фактор возвеличивающий Россию. Прогрессивные деятели образования, известные педагоги России возвысились до государственно мыслящих граждан России.

2) Пессимистическая, славу отечеству приносили образованнейшие граждане России, но во многих случаях образование развивалось вопреки государственным мужам .

Если русское общество еще живо и жизнеспособно, если оно таит в себе семена будущего, то жизнеспособность должна проявиться прежде всего в готовности и способности учиться у истории, так как история - это не только хронология, но еще и жизненный опыт добра и зла, составляющие условия духовного роста.Но существует вопрос - есть ли у нас идеи и принципы русского образования, могут ли быть они сформулированы сегодня или в ближайшее время. Истинно русские идеи и принципы предполагают иное отношение к образованию, но обращать внимание на образование лишь с точки зрения социологии и педагогики, недостаточно для сегодняшнего рассмотрения теории образования, так как это не педагогический и не социологический термин.

Образование - это прежде всего историко-культурный феномен, но и социально-педагогическая система, функционирующая по собственным законам. Образование - это уникальная система, в которой жили одновременно, общались, взаимодействовали люди разного возраста, социального положения: дети, подростки, взрослые, школьники, дошкольники, учителя - от министра, ректора, до лаборанта.

Смысл русской школы человек, его гармония отношений с миром, с самим собой, с другими людьми, его духовное становление, содержание образования определяется его народностью, православием и наукой.

Народность - это отечественная культура, русский язык, родная литература, отечественная история, география, родная природа.

Православие - это не только отдельные уроки или лекции по религии, это построение процесса воспитания и обучения на идеях православия.

Наука - это учебные дисциплины, которые представляют основные отрасли научного знания. История развития отечественной и мировой науки, жизнь и деятельность выдающихся ученых, разумное соответствие гуманитарным и естественным дисциплинам.

Среди наук, которые обслуживают образование, особое место занимает педагогика. В последнее время она претерпела ряд серьезных изменений. Сегодня важно понять, что педагогика обогащается разными языками и вырастает на основе христианства. Ушинский говорил: "Для нас не христианская педагогика- есть вещь не мыслимая, деятельность без цели, без результатов впереди." В последнее время не хватает исторически сложившихся терминов в науки психологии, педагогики, философии, как личность, индивид. Сегодня есть потребность возвращаться к такой категории как человек, целостная составная, часть природы, от разумной жизнедеятельности которого устанавливается взаимоотношение общества и космоса, и если мы это поймем, тогда возвратимся к таким словам, как святость, совесть, стыд и многим другим забытым понятиям, без которых педагогика безумна, холодна, и тем самым поймем, что сознание и быт человека определяется не политической и экономической, не конституцией, а культурой, духовной жизнью, добрыми деяниями каждого.

Весь смысл возрождения русской национальной школы представляется борьбой за активное функционирование русской народной педагогики, так как именно она определяет глубинные процессы, происходящие в духовно-нравственном мире русского человека, именно она показывает, что прошлое мудрее настоящего.

Особенностями русского народного воспитания - это естественность, непрерывность, действенность, изобретательность, именно в русской народной педагогике обобщается опыт, и вся духовно-нравственная жизнь концентрируется вокруг двух явлений человеческого существования - воспоминание и мечты, но народная педагогика терпимо относится к другим народам, нациям, так как ей чужды расовые предрассудки, ирония. Понять народы можно только поняв истоки формирования их национального характера.

Для возрождения русской национальной школы требуется разработка этно-педагогической концепции русской школы :

1) приоритетность русского языка, с сохранением высокого уровня изучения, владения, употребления;

2) замена или дополнение школьного курса истории историей народа;

3) учет национальных, интеллектуальных, художественных традиций;

4) восстановление художественных промыслов, искусства, народных праздников, игр, зрелищ, возрождение культуры воспитания;

5) меры по обогащению духовной культуры ( книги );

6) фольклор;

7) воспроизведение жизни русского народа с учетом традиций разных народностей, проживающих на территории страны;

8) укрепление межнациональных связей.

В русской национальной школе должны учитываться традиции, движение жизни. Если говорить о русской национальной школе, то должны иметь в виду всю систему специализированного института образования от яслей, школы, ВУЗа, и должны рассматривать этот специализированный институт образования в конспекте воспитывающих факторов: от семьи, средств массовой информации, улицы и так далее.

Национальное воспитание - это воспитание добра, то есть ум как доброта, а доброта как ум, то есть любой ребенок рассматривается как прежде всего человек, гражданин.
Сфера образования есть основа мировоззрения, национального самосознания и гражданского воспитания, источник духовного, интеллектуального развития человека и народа в целом, и сообщества как духовной опоры государства.

Система образования в России не должна быть основана на очередных планетарных утопиях и пренебрежении к религиозно-этической основе культуры, следовательно, наша цель создание системы образования, основанной на глубоком освоении духовного наследия России через воссоздание русской национальной школы и на приобщении граждан к лучшим достижениям мировой цивилизации. Данная система образования должна способствовать выработки преемственного мышления, приверженности своему национальному наследию и осознанию его роли и места в мировом духовном развитии, также уважению и открытости ко всем другим системам и традициям. Данное образование - предпосылка к формированию целостного видения многообразного мира. Только глубокая и осознанная любовь к своему наследию побуждает человека с уважением относиться к чувствам других, так как без национальный, нечуткий к трагедиям отечества и народа современный человек - это продукт безрелигиозного образования, и по этому на быстрый успех надеяться не приходится, но пытаться стоит.

Все человечество кормится русской наукой, русскими достижениями, русской духовностью, но это все проходит незамеченным, многие русские люди уехавшие за рубеж, являются носителями самой высокой научной культуры.

Любая наука имеет две фазы. Одна - общечеловеческая, вторая фаза сугубо национальная. Приведу пример - русский космизм. Возьмем таких ученых как Циолковского, Федорова, ведь эти люди проникали в науку со своей русской позиции, которая определяется величайшей духовностью, контактом с народом.

Существует специальная комплексно-целевая программа "Развитие", которая находит активное применение при создании и развитии русских национальных школ, наработанный материал пользуется большим успехом, так как в его содержание вошли программные статьи, научные разработки задач и перспективного развития русской национальной школы, учебные программы и методики.

1. Информационное обеспечение: собраны документы, используемые в учебно-воспитательном процессе, обобщения опыта, результатов творческой и исследовательской работы.

2. Работа с педагогическими кадрами: включение учителей в педагогический поиск и развитие на основе профессионального мастерства и педагогического творчества.

ОСНОВНЫЕ НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ

- формирование нового содержания образования, отвечающее требованиям современности и будущего;

- модернизация учебного процесса;

- приобщение учащихся к цивилизованной традиции, предполагающей единство гуманитарного, естественно-научного и прикладного знания;

- раскрытие умственных, душевных и физических способностей, восстановление и приумножение душевности и нравственно-духовной силы;

- создание систематической школы усовершенствования человека;

- установление и укрепление "внешних" связей школы ( с родителями, разными организациями, различными ВУЗами и так далее).

3. Особое место должно занимать диагностика результатов обучения, так как цель исследования состоит в изучении уровня знаний и умений, навыков.

Обучение математике является одним из составных элементов обучения учащихся в русской национальной школе. При поверхностном наблюдении математика представляется плодом трудов многих связанных индивидуальностей, разбросанных по континентам, векам и тысячелетиям, но внутренняя логика ее развития больше напоминает работу одного интеллекта, непрерывно и систематически развивающего свою мысль, использующего как средство многообразие человеческих личностей.

Любая деятельность, лишенная цели, тем самым теряет и смысл, но если сравнить человечество с живым организмом, то математика окажется непохожей на осмысленную, целенаправленную деятельность, она аналогична инстинктивным действиям, которые могут стереотипно повторятся, пока работает внешний и внутренний возбудитель.

Не имея цели, математика не может выработать и представления о своей форме, ей остается в качестве идеала ничем не регулируемый рост, а вернее - расширение по всем направлениям. Математика радикально отличается от других форм культурной деятельности, но ее объекты более абстрактны, поэтому в математике различимы закономерности.

Математика - одна из древнейших наук. За долгую историю своего существования она знала периоды расцвета и длительного застоя. Чрезвычайно расширились связи математики с другими науками. Грандиозны и разнообразны практические приложения математики, но этим не ограничивается значение науки математики. Математика дисциплинирует ум, приучает к логическому мышлению.

При обучении математики в школе особое место уделялось задачам, особенно занимательным, так как считалось, что элемент занимательности облегчает обучение. К занимательным задачам относятся задачи с интересным содержанием или интересным способом решения, математические игры, Задачи, касающиеся интересных свойств чисел или геометрических тел.

В XVI-XVII веках в России начинает появляться и распространятся рукописная математическая литература ( этого требуют межевание и измерение земель, система податного обложения, градостроительство и военное дело, развивающиеся торговые отношения, многие из этих рукописей перешли в учебники по арифметике и алгебре.

Данные рукописи сыграли большую роль в распространении математических и практических знаний, они явились той основой, на которой создавались современные учебники математики.

Перестройка государственной, общественной и культурной жизни страны подняла вопросы образования, требовались специалисты для создания армии, флота, развития промышленности и так далее, для распространения в стране математических знаний, для подготовки кадров нужны были учебники. Одним из таких учебников был учебник Магницкого.

Рассматривая тот или иной раздел систематического курса математики в школе учащимся надо предлагать исторические задачи, а также интересные заметки о многих ученых.

История математического просвещения в нашей стране знает не мало славных имен, среди них имя Леонтия Филипповича Магницкого занимает особое место, следовательно, в русской национальной школе обязательно надо рассказать о его жизни и деятельности и предоставить для решения многие его задачи.

1. Леонтий Филиппович Магницкий и его "Арифметика"

В семье крестьянина Осташковской слободы Тверской губернии Филиппа Теляшина в июне 1669 года родился мальчик, которого назвали Леонтием.

Уже с детских лет Леонтий стал выделяться многообразием умственных интересов среди своих сверстников, он самостоятельно научился читать, писать. Желание знать как можно больше побудило Леонтия изучать иностранные языки. В итоге упорных занятий он овладел несколькими языками: латинским, греческим, немецким, итальянским.

Основным же предметом самостоятельных занятий Леонтия Филипповича была математика, он тщательно изучал русские арифметические, геометрические и астрономические рукописи XVII века. Это позволило значительно расширить его кругозор.

Знания Леонтия Филипповича в области математики удивляли многих, им заинтересовался и царь Петр I.

В России быстро развивались промышленность, торговля, осуществлялась перестройка военной техники, стране нужны были образованные люди различных специальностей, Петр решил открыть ряд технических учебных заведений, но этому мешало отсутствие российских кадров учителей и полноценной учебной литературы по физике, математике, техническим дисциплинам.

При встрече Леонтий Филиппович произвел на царя очень сильное впечатление незаурядным умственным развитием и обширными познаниями. В знак почтения и признания достоинств Петр жаловал ему фамилию Магницкий.

В январе 1701 года появился указ Петра о создании в Москве школы математических и навигацких наук. В данной школе и начал свою учебную деятельность Л.Ф.Магницкий, одновременно он приступил к созданию учебника арифметики. "Арифметика" Магницкого увидела свет в январе 1703 года, она положила начало печатанию математических учебников в России, в дальнейшем Магницкий активно участвовал в публикации математической и астрономической литературы, которая требовалась для новой школы.

В 1715 году в Петербурге открыли Московскую академию, изучение военным наукам перенесли в академию, а Московская же школа основное внимание стала уделять обучению учащихся арифметике, геометрии, тригонометрии. В это же время Магницкого назначили заведующим учебной частью и старшим учителем математики Московской школы. В Московской школе Магницкий трудился до дня своей смерти, до октября 1739 года.

Магницкий умер, но остались его учебники, они предназначались не только для школы. В учебнике Магницкого использованы традиции русских математических рукописей, но его труд не копирует рукописи, в нем значительно улучшена система изложения материала: вводятся определения, осуществляется плавный переход к новому, появляются новые разделы, задачи, приводятся дополнительные сведения. Магницкий стремился заинтересовать своего читателя изучением математики. Современники Магницкого очень ценили.

На протяжении полувека, до середины XVIII столетия, "Арифметика" Леонтия Филипповича служила учебником для учащихся, Магницкий на страницах своей знаменитой книги высказал пожелание: " И желаем, да будет сей труд Добре пользовать русский весь люд".

Задачи из учебника Магницкого оказались весьма жизнеспособны, многие из них перешли в последующие учебники, и до настоящего времени они часто приводятся авторами арифметических и алгебраических задачников. Эти задачи весьма интересны, они дают возможность почувствовать колорит и особенности языка той эпохи. Рассмотрим некоторые из эти задач.

2. Задачи и загадки

1. ТОРГОВЕЦ

Некий торговец купил 112 баранов старых и молодых, дав 49 рублей 20 алтын, за старого платил по 15 алтын и по 2 деньги, а за молодого по 10 алтын, сколько старых и молодых баранов купил он.

Примечание. Алтын равен 3 копейки, а деньга равна половине копейки.

РЕШЕНИЕ: Х - количество молодых баранов,
112-Х - количество старых баранов,
15 алтын 2 деньги = 46 копеек
10 алтын = 30 копеек
49 рублей 20 алтын= 4960 копеек
Получили уравнение 46*(112-Х)+30*Х=4960
решая уравнение имеем, что молодых баранов было 12, а старых-100.

2.РАБОТНИК И КАФТАН

Некий человек нанял работника на год, обещав ему дать 12 рублей и кафтан, но тот проработал 7 месяцев,захотел уйти и попросил достойной платы с кафтаном, а хозяин дал расчет 5 рублей и кафтан, сколько стоит кафтан?

РЕШЕНИЕ: если годовая оплата труда работника составляет 12 рублей и кафтан, то за один месяц он зарабатывает в 12 раз меньше, а именно 1 рубль и 1/12 стоимости кафтана.

3.СЛИВЫ

Двое ели сливы, один сказал другому:"Дай мне свои две сливы, тогда будет у нас слив поровну",- на что другой ответил:"Нет, лучше ты дай мне свои две сливы,-тогда у меня будет в два раза больше, чем у тебя". Сколько слив у каждого?

РЕШЕНИЕ: так как передача двух слив уравнивает число слив у собеседников, то у одного из них на четыре больше, чем у другого, если же человек у которого слив меньше отдает человеку у которого больше, следовательно разница увеличивается да 8 слив, поскольку второй человек тогда будет иметь слив в два раза больше, то у одного из них после передачи будет 8 слив у другого 16 слив, следовательно, до передачи у одного из собеседников 10 слив, а у другого 14 слив.

4. КОМУ ПАСТИ ОВЕЦ ?

У пятерых крестьян - Ивана, Петра, Якова, Михаила и Герасима - было 10 овец, не могли они найти пастуха, чтобы пасти овец, и  говорит Иван остальным: "Будем пасти овец по очереди - по сколько дней, сколько каждый из нас имеет овец". По сколько дней должен пасти каждый крестьянин, если известно, что у Ивана в два раза меньше овец ,чем у Петра, У Якова в два раза меньше овец, чем у Ивана, Михаил имеет овец в два раза больше, чем Яков, а Герасим
вчетверо меньше, чем Петр ?

РЕШЕНИЕ: из условия следует, что и у Ивана и у Михаила вдвое больше овец, чем у Якова, у Петра в двое больше, чем у Ивана, значит, вчетверо больше, чем у Якова, но тогда у Герасима столько же овец, сколько имеет их Яков, общее число овец в (2+4+1+2+1)=10 раз больше, чем число овец у Якова, следовательно, у Якова 1 овца, у Ивана и у Михаила по 2 овцы, у Петра 4 и у Герасима 1 овца.

5. ЧЕРЕЗ СКОЛЬКО ДНЕЙ ВСТРЕТЯТСЯ ПУТНИКИ ?

Идет один человек в другой город и проходит в день 40 верст, а другой человек идет навстречу ему из другого города и в день проходит по 30 верст, через сколько дней путники встретятся? Если расстояние между городами 700 верст.

РЕШЕНИЕ:За один день путники сближаются на 70 верст, а так как расстояние между городами 700 верст то они встретятся через 700 : 70 = 10 дней

6. ПРОТОРГОВАЛСЯ ЛИ КУПЕЦ ?

Некто продавал коня и просил за него 1000 рублей. Купец сказал, что цена велика, "Хорошо, -ответил продавец, если ты говоришь, что конь дорого стоит, то возьми его себе даром, а заплати только за одни гвозди на его подковах, а гвоздей на его каждой подкове по 6 штук, и будешь ты мне за них платить таким образом: за первый гвоздь полушку, за второй - две полушки, за третий 4 полушки, и так далее за все гвозди: за каждый в два раза больше чем предыдущий". Купец согласился, проторговался ли купец?

РЕШЕНИЕ: всего гвоздей 24 штуки, за все гвозди купец должен заплатить 1 + 2 + 2*2 + 2*2*2+ +...+2*2*...*2 полушек 23 раза и того получаем 41943 рубля и 15 полушек.

7. "ПОЛТОРАЖДЫ ПОЛТОРА"

"Купил полторажды полтора аршина, дал полтретьяжды полтретьи гривны: сколько дати за полдевятажды полдевята аршина"?

В этой задаче "полторажды полтора" означает 3/2 * 3/2 = 9/4 ,

"полтретьяжды полтретьи" означает 2.5 * 2.5 = 25/4

"полдевятажды полдевята" - 8.5 * 8.5 = 289/4 .

Следовательно, текст задачи следует понимать так: Куплено 9/4 аршина сукна и за них уплачено 25/4 гривны. Сколько надо уплатить за 289/4 аршина сукна?

РЕШЕНИЕ: поскольку за 9/4 аршина уплачено 25/4 гривны, то 9 аршин стоят 25 гривен,а, значит, один аршин стоит 25/9 гривны, то 289/4 аршина сукна стоят 289/4 * 25/9 = 200 25/36 гривны

8. ПОКУПКА ПТИЦ

Хозяин послал работника на базар купить 20 птиц: гусей, уток и малых чирков. Он дал работнику 16 алтын. Гусей велел покупать по 3 копейки за штуку, уток по копейке, а малых чирков по два за копейку. Сколько гусей, сколько уток и сколько чирков купил работник?

РЕШЕНИЕ: Работник отправившись на базар, имел 16 алтын, что составляет 48 копеек, так как за гуся велено платить по 3 копейки, то взятых денег хватило на 16 гусей, но тогда нельзя будет купить ни уток, ни чирков, итак, работник купил не более 15 гусей.

Допустим, что работник уже купил чирков и уток, если бы гуси стоили по 1 копейке, то за все покупки работник заплатил бы менее 20 копеек и у него осталось бы более 28 копеек, эти оставшиеся копейки работник должен фактически потратить на гусей, доплатив за каждого гуся по 2 копейки, по условию работник израсходовал все деньги, значит, он купил более 14 Гусей, потратив на них 45 копеек.

Итак, работник протратил 3 копейки на покупку 5 птиц - уток и чирков, если бы чирки стоили по 1 копейке за штуку, то покупка обошлась бы в 5 копеек, лишние 2 копейки возникли потому, что пришлось бы переплатить за каждого чирка по половине копейки, поэтому было куплено 4 чирка и, значит, 1 утка.

Значит, работник купил 15 гусей, 1 утку и 4 чирка.

9. ХОЗЯИН И РАБОТНИК

Хозяин нанял работника с таким условием: за каждый рабочий день будет кому платить по 20 копеек, а за каждый нерабочий день - вычитать 30 копеек, по прошествии 60 дней работник ничего не заработал. Сколько было рабочих дней?

РЕШЕНИЕ: если бы работник работал без прогулов, то за 60 дней он заработал бы 20 * 60 = 1200 копеек, за каждый нерабочий день у него вычитают 30 копеек и он не зарабатывает 20 копеек, то есть за каждый прогул он теряет 20 + 30 = 50 копеек. Поскольку за 60 дней он ничего не заработал, то потеря за все нерабочие дни составила 1200 копеек, то есть число нерабочих дней равно 1200 : 50 = 24 дня, количество рабочих дней поэтому равно 60 - 24 = 36 дням.

10. СКОЛЬКО У КОГОДЕНЕГ?

Три человека собрались покупать товару на 54 рубля, и говорит первый второму: "Дай мне из своих денег 1/4 часть, и я один заплачу за товар". А второй обращается к третьему: "Дай мне 1/3 часть твоих денег, тогда и я один смогу заплатить за товар".Также и третий человек обратился к первому, но попросил 1/2 часть его денег. Сколько у кого денег?

РЕШЕНИЕ: Допустим, что у первого человека 50 рублей, тогда четвертая часть денег второго равна 4 рублям и ,значит, у второго 16 рублей, но тогда третья часть денег третьего человека равна 54 - 16 = 38 рублей и, значит у третьего человека 38 * 3 = 114 рублей, если он получит половину денег первого человека, то у него станет 114 + 25 = 139 рублей, что на 139 - 54 = 85 рублей больше стоимости покупки.

Положим теперь, что у первого человека 46 рублей, тогда у второго человека 4 * ( 54 - 46 ) = 32 рубля, у третьего 3 * ( 54 - 32 ) = 66 рублей, после того как третий получит половину денег первого человека, у него станет 66 + 23 = 89 рублей, что на 89 - 54 = 35 рублей больше стоимости покупки.

С помощью "фальшивого" правила находим:

50 85 85 - 35 = 50, 85 * 46 - 50 * 35 = 2160

46 35 2160 : 50 = 43.2

Таким образом у первого человека было 43 рубля и 20 копеек, тогда у второго также будет 43.2 рублей, а у третьего 32.4 рублей.

11. ЗАДУМАЙ ЧИСЛО.

Найти объяснение для следующей математической забавы :

Будем придерживаться следующей нумерации дней недели: воскресенье - первый день, понедельник - второй день, и так далее.

Пусть кто- нибудь из собравшихся задумает какой-нибудь день недели, а затем про себя выполнит действия:

1) умножит номер задуманного дня на 2;

2) прибавит к произведению 5;

3) умножит сумму на 5;

4) припишет к полученному числу справа ноль.

Ведущий, осведомившись о результате, отнимает от названного ему числа 250, полученная разность разность всегда выражается трехзначным числом, две последние цифры которого - нули, цифра сотен позволяет назвать задуманный день недели.

РЕШЕНИЕ: какой бы день недели не был задуман, ему соответствует однозначное число, обозначим его через j, выполним над числом j указанные действия, записывая решения в виде числовой формулы:

1) j * 2;
2) j * 2 + 5;
3) ( j * 2 + 5 ) * 5;
4) ( ( j * 2 + 5 ) * 5 ) ) * 10;

так как умножение числа на 10 равносильно приписыванию нуля в конце этого числа, но (( j * 2 + 5) * 5)*10 = 100 * j + 250.

Вычитая из этого числа 250, получаем 100 * j,  где j = 1, 2, 3, 4, 5, 6, 7 - есть номер задуманного числа

12. ДВЕНАДЦАТЬ ЧЕЛОВЕК.

Двенадцать человек несут 12 хлебов: каждый мужчина несет по 2 хлеба, женщина - по половине хлеба, а ребенок по четверти хлеба. Сколько было мужчин, женщин и детей?

РЕШЕНИЕ: подумаем, как могут распределиться 12 хлебов между мужчинами, женщинами и детьми, попробуем мысленно распределить хлеба между ними, сначала дадим всем по половине хлеба, при этом будет роздано 6 хлебов, чтобы удовлетворить условию задачи, нужно раздать оставшиеся 6 хлебов мужчинам, а затем взять у каждого из детей по четверти хлеба и также распределить между мужчин, каждому мужчине до его нормы не хватает полтора хлеба, шесть хлебов по полтора хлеба можно распределить между четырьмя мужчинами, после чего каждый из них будет нести по два хлеба, отсюда следует, что мужчин не менее 5, иначе излишки хлеба, имеющиеся у детей, некому было бы нести, но если бы мужчин было 6, то они сами несли бы весь хлеб, а женщинам и детям ничего бы не осталось, итак, имеется всего 5 мужчин, поэтому мужчине до его нормы не хватает полтора хлеба, и именно эти полтора хлеба нужно собрать по четверти у каждого из детей. Так как полтора хлеба состоят из шести четвертей, то детей имеется всего шестеро и, значит, количество женщин равно 12 - 5 - 6 = 1. Следовательно, хлеба несли 5 мужчин, одна женщина и 6 детей.

13. ДВА ВОИНА

Один воин вышел из города и проходил по 12 верст в день, а другой вышел одновременно и шел так: в первый день прошел 1 версту, во второй день 2 версты, в третий день 3 версты, в четвертый день 4 версты, в пятый день 5 верст и так прибавлял каждый день по одной версте, пока не настиг первого, через сколько дней второй воин настигнет первого?

РЕШЕНИЕ: В первый день второй воин отстает на 12 - 1 = 11 верст, во второй еще на 12 - 2 = 10 верст, в третий еще на 12 - 3 = 9 верст и так далее, на двенадцатый день отставание составит ( 11 + 10 + 9 +...+ 2 + 1 + 0 ) верст, а затем расстояние между ними начнет сокращаться, в 13-й день на 1 версту 13 - 12 = 1, в 14-й день еще на 14 - 12 = 2 версты, в 15-Й день еще на 15 - 12 = 3 версты и наконец в 23-й день на 23 - 12 = 11 верст, на 23-й день расстояние между ними уменьшится на ( 1 + 2 + ... + 10 + 11 ) верст, это значит, что второй воин по прошествии 23 дней достигнет первого.

14. СКОЛЬКО ЯИЦ В ЛУКОШКЕ.

Пришел крестьянин на базар и принес лукошко яиц, торговцы его спросили: "Много ли у тебя в том лукошке яиц?", крестьянин молвил им так: " Я всего не помню на перечень, сколько в том лукошке яиц, только помню: перекладывал я те яица в лукошко по 2 яица, то одно лишнее осталось на земле; и я клал в лукошко по 3 яица, то одно же яицо осталось; и я клал по 4 яица, то одно же яицо осталось; и я клал по 5 яиц, то одно яицо же яицо осталось; и я их клал по 6 яиц, то одно же яицо осталось; и я их клал по 7  яиц, то ни одного не осталось, сочти мне, сколько в том лукошкеяиц было?"

РЕШЕНИЕ: задача сводится к нахождению такого числа, которое делится нацело на 7, а при делении на 2,3,4,5,6 дает в остатке 1, если искомое число уменьшить на 1, то получится число делящееся на 2,3,4,5,6 без остатка.

Наименьшее число, которое делится без остатка на числа 2,3,4,5,6 есть 60, нужно значит найти такое число, которое делилось бы на 7 нацело и было бы вместе с тем на 1 больше числа делящегося на 60, рассмотрим числа 61,121,181, 241, 301 и так далее, Первое из написанных чисел, делящееся на 7, есть 301, кроме этого числа, условию задачи удовлетворяют 721, 1141, 1561 и так далее, ряд чисел, удовлетворяющих условию задачи, бесконечен.

Каждое из них получается прибавлением к предыдущему 420 - наименьшего числа, делящегося на 4,5,6,7.

15. ДВИЖЕНИЕ ПАЛЬЦА.

Это один из способов помочь памяти с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1 , второй за ним- цифрой 2, затем 3,4, ... до десятого пальца, если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается 9; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения.

ПРИМЕР: Пусть надо найти произведение 4 * 9

Положив обе руки на стол, приподнимем четвертый палец, считая слева направо, тогда до поднятого пальца находятся три пальца, а после поднятого - 6 пальцев, следовательно результат произведения равен 36.

РЕШЕНИЕ: проще всего убедиться в справедливости этого правила, поднимая по очереди пальцы от первого до десятого и сравнивая результат "ручного умножения" с таблицей умножения, а вот доказательство, если поднимаемый палец имеет номер n, то слева от него лежит ( n - 1 ) палец, а справа ( 10 - n ). Следовательно, получаем тождество:

10 * ( n - 1 ) + ( 10 - n ) = 9 * n которое и подтверждает правило умножения на пальцах.

2.1. Задачи - шутки, задачи - загадки

1. КОЗА.

Один человек купил трех коз и заплатил 3 рубля, спрашивается: по чему каждая коза пошла?

РЕШЕНИЕ: по земле .

2. МНОГО ЛИ НОГ?

Мельник пришел на мельницу, в каждом из четырех углов он увидел по 3 мешка, на каждом мешке сидело по 3 кошки, а каждая кошка имела при себе 3 котят, спрашивается, много ли ног было на мельнице?

РЕШЕНИЕ: две ноги мельника,ибо у кошек и котят не ноги, а лапы.

3. СКОЛЬКО УТОК?

Летели утки: одна впереди и две позади, одна позади и две впереди, одна между двумя другими и три в ряд, сколько всего летело уток ?

РЕШЕНИЕ: всего летело три утки, одна за другой.

4. ЗА СКОЛЬКО МИНУТ?

Ребята пилят бревна на метровые куски, отпиливание одного такого куска занимает одну минуту, за сколько минут они распилят бревно длиной 5 метров?
РЕШЕНИЕ: за 4 минуты.

5. КАК РАЗДЕЛИТЬ?

Как разделить полтину на половину.

РЕШЕНИЕ: так как полтина - 50 копеек, то надо разделить 50 на 1/2, выполнив деление получим: 50 : 1/2 = 100 копеек = 1 рубль

2.2. Затруднительные ситуации

1. ВОЛК, КОЗА И КАПУСТА.

Крестьянину надо перевести через речку волка, козу, и капусту, в лодке может поместиться только один человек, а с ним или волк, или коза, или капуста, если оставить волка с козой без человека, то волк съест козу; если оставить козу с капустой, то коза съест капусту, в присутствии человека коза не может съесть капусту, а волк - козу, человек все-таки перевез груз через реку, как он это сделал?

РЕШЕНИЕ: человек в начале перевозит на другой берег козу, оставляя волка с капустой на берегу; затем возвращается, забирает волка и перевозит его на другой берег,а козу увозит с собой обратно,оставляя козу на берегу, человек перевозит к волку капусту, затем возвращается и перевозит козу.

2. ДЕВИЧЬЯ ХИТРОСТЬ .

Золотошвейка, взяв 20 девушек в учение, разместила их в 8 комнат своего дома так, как на рисунке 

┌───────┬──────┬──────┐ по вечерам золотошвейка обходила
│   2   │   3  │   2  │ дом и проверяла, чтобы в комнатах
├───────┼──────┼──────┤ на каждой стороне его было по 7
│   3   │      │   3  │ девушек, однажды к девушкам в
├───────┼──────┼──────┤ гости приехали 4 подружки и, за-
│   2   │   3  │   2  │ говорившись, остались ночевать,
└───────┴──────┴──────┘ причем все 24 девушки

разместились в комнатах так, что вечером золотошвея насчитала в комнатах на каждой стороне дома опять по 7 девушек, на следующий день 4 девушки пошли провожать своих четырех подруг и дома опять вечером золотошвея насчитала в комнатах на каждой стороне дома по 7 девушек, как размещались девушки по комнатам в двух последних случаях.

Р Е Ш Е Н И Е: 1) 24 девушки можно разместить ; 2) 16 - разместить так

┌─────┬─────┬─────┐ ┌─────┬─────┬─────┐
│  1  │   5 │   1 │ │ 3   │ 1   │ 3   │
├─────┼─────┼─────┤ ├─────┼─────┼─────┤
│  5  │     │   5 │ │ 1   │     │ 1   │
├─────┼─────┼─────┤ ├─────┼─────┼─────┤
│  1  │   5 │   1 │ │ 3   │ 1   │ 3   │
└─────┴─────┴─────┘ └─────┴─────┴─────┘ 

2.3. Забавные истории

 1. СМЕКАЛИСТЫЙ СЛУГА

Постоялец гостиницы обвинил слугу в краже всех его денег, но слуга сказал так: " Это - правда, я украл все, что он имел". Тогда слугу спросили о сумме украденных денег, и он ответил: "Если к украденной мною сумме прибавить еще 10 рублей, то получится мое годовое жалование, а если к сумме его денег прибавить 20 рублей, то получится вдвое больше моего жалования". Сколько денег имел постоялец и сколько рублей в год получал слуга?

РЕШЕНИЕ: из условия следует, что жалованье слуги на 10 рублей больше его же жалования, значит, годовое жалование слуги составляет 10 рублей, а постоялец,заявивший, что его обокрали, вообще не имел денег.

2. " БОГАТСТВО"

У приезжего молодца оценили " богатство": модный жилет с поношенным фраком в три алтына без полушки, но фрак вполтретья дороже жилета, спрашивается каждой вещи цена.

РЕШЕНИЕ: "вполтретья" - в 2.5 раза три алтына без полушки составляет 35 полушек и такова стоимость фрака вместе с жилетом, фрак по условию дороже жилета в 2.5 раза, поэтому жилет в 3.5 раза дешевле, чем фрак и жилет вместе, так что жилет стоит 35 : 3.5 = 10 полушек, а фрак стоит 10 * 2.5 = 25 полушек или 6.25 копейки.

3. ВЕСЕЛЫЙ ЧЕЛОВЕК

Веселый человек пришел в трактир с некоторой суммой денег и занял у содержателя трактира столько денег, сколько у себя имел, из этой суммы истратил 1 рубль, с остатком пришел в другой трактир, где опять занял столько денег, сколько имел, в этом трактире также истратил 1 рубль, потом пришел в третий и четвертый трактиры и повторил то же самое, наконец, когда вышел из четвертого трактира, не имел ничего, сколько денег имел первоначально веселый человек?

РЕШЕНИЕ: так как после выхода из четвертого трактира у человека не осталось денег, то после ухода из третьего трактира он имел 50 копеек, в третьем трактире он истратил 1 рубль, а пред этим он одолжил столько денег сколько имел, поэтому после ухода из второго трактира он имел половину от 1 рубля 50 копеек, то есть 75 копеек, аналогично, после выхода из первого трактира у человека имелось 175 : 2 = 87,5 копеек, значит, он пришел в первый трактир, имея ( 87.5 + 100 ) : 2 = 93.75 копейки, то есть 93 копейки и 3 полушки.

Можно привести для примера еще очень многое число задач разной степени сложности, но все они были написаны одним выдающимся русским математиком Леонтием Филипповичем Магницким. Многие его задачи пользуются большой популярностью в школьном курсе математики. Высокую оценку деятельности Магницкого давали его современники и потомки, его научные труды признавали за образец учености, про него писали: " Магницкий Леонтий муж, сведущий славянского языка, ... добросовестный и нельстивый человек, первый российский арифметик и геометр, первый издатель и учитель в России арифметики и геометрии".

ЛИТЕРАТУРА

1. Дэпман И.Я. Рассказы о решении задач. - Л.:Детгиз, 1964.

2. Денисов А.П. Леонтий Филиппович Магницкий. - М., 1967.

3. История отечественной математики. - Т.1. - Киев, 1966.

4. Минковский В.Л. За страницами учебника математики. - М.: Просвещение, 1966.

5. Нагибин Ф.Ф. Математическая шкатулка. - М.:Просвещение, 1964.

6. Олехник С.Н., Нестеренко Ю.В., Потапов М.К. Старинные за- нимательные задачи. - М.:"Вита-Пресс", 1994.

7. Русская школа. Сб. статей. Вып.1. - М.:"Роман-газета", 1993.

8. Русская школа. Сб. статей. Вып.2. - М.:"Роман-газета", 1994.

9. Русская школа. Сб. статей. Вып.3. - М.:"Роман-газета",



  © Реферат плюс


Поиск

  © REFERATPLUS.RU  

Яндекс.Метрика