Календарь
Ноябрь
Пн   5 12 19 26
Вт   6 13 20 27
Ср   7 14 21 28
Чт 1 8 15 22 29
Пт 2 9 16 23 30
Сб 3 10 17 24  
Вс 4 11 18 25  

Теорема о трех перпендикулярах



Скачать: Теорема о трех перпендикулярах

Теорема 17.5: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. И обратно: если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.

Доказательство: пусть АВ - перпендикуляр к плоскости , АС - наклонная и с - прямая в плоскости , проходящая через основание С наклонной. Проведем прямую СА1, параллельную прямой АВ. Она перпендикулярна плоскости . Проведем через прямые АВ и А1С плоскость . Прямая с перпендикулярна прямой СА1. Если она перпендикулярна прямой СВ, то она перпендикулярна плоскости , а значит, и прямой АС. Аналогично если прямая с перпендикулярна наклонной СА, то она, будучи перпендикулярна и прямой СА1, перпендикулярна плоскости , а значит, и проекции наклонной ВС. ЧТД.

Вывод формулы объема шара.



  © Реферат плюс


Поиск

  © REFERATPLUS.RU  

Яндекс.Метрика