Календарь
Ноябрь
Пн   5 12 19 26
Вт   6 13 20 27
Ср   7 14 21 28
Чт 1 8 15 22 29
Пт 2 9 16 23 30
Сб 3 10 17 24  
Вс 4 11 18 25  

Теорема о двух прямых, перпендикулярных плоскости



Скачать: Теорема о двух прямых, перпендикулярных плоскости

Теорема 17.4: две прямые, перпендикулярные одной и той же плоскости, параллельны.

Доказательство: пусть а и в - две прямые, перпендикулярные плоскости . Допустим, что прямые а и в не параллельны. Тогда существует некая прямая в1 параллельная а. Выберем на прямой в точку С, не лежащую в плоскости . Проведем через точку С прямую в1, параллельную а. Прямая в1 перпендикулярна плоскости  (теорема 17.3). пусть В и В1 - точки пересечения прямых в и в1 с плоскостью . Тогда прямая ВВ1 перпендикулярна пересекающимся прямым в и в1. А это невозможно. Мы пришли к противоречию. ЧТД.

Прямоугольный параллелепипед - параллелепипед, у которого основанием является прямоугольник. У прямоугольного параллелепипеда все грани - прямоугольники. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями).

Теорема 19.4: в прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.



  © Реферат плюс


Поиск

  © REFERATPLUS.RU  

Яндекс.Метрика