Календарь
Октябрь
Пн   2 9 16 23 30
Вт   3 10 17 24 31
Ср   4 11 18 25  
Чт   5 12 19 26  
Пт   6 13 20 27  
Сб   7 14 21 28  
Вс 1 8 15 22 29  

Однополостный гиперболоид



Скачать: Однополостный гиперболоид

 Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени. К ним относится однополосный гиперболоид.

 Однополосный гиперболоид

 Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

      (1)

 Из уравнения (1) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.

Уравнение (1) называется каноническим уравнением однополосного гиперболоида. 

Если однополостный гиперболоид задан своим каноническим уравнением (1) то оси Ох, Оу и Oz называются его главными осями.

Установим вид поверхности (1). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

  и      

из которых следует, что в сечениях получаются гиперболы.

   Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

                         или        

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями     и  ,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании  величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

Исследование поверхности методом параллельных сечений.

Суть метода заключается в выяснении формы линий пересечения поверхности с плоскостями, параллельными координатным плоскостям.

Рассмотрим линии пересечения с плоскостями, параллельными плоскости OXY. Все уравнения линий пересечений будут получаться из уравнения плоскости, в котором z будет заменена на некоторое число, равное расстоянию от пересекающей плоскости до плоскости OXY. Для более наглядного представления, я изобразил все полученные кривые в виде проекций на плоскость OXY. Изображения кривых представлены выше.

Величины a, b, c называются полуосями однополосного гиперболоида. Если a=b,то гиперболоид может быть получен вращением гиперболы с полуосями а и с вокруг мнимой оси 2с.

Одним из примеров такой поверхности является конструкция радиобашни построенной  по принципу сетчатых конструкций на Шаболовке (г. Москва), Владимиром Григорьевичем Шуховым в 1919 - 1922 гг. В прошедшем году исполнилось 80 лет Шаболовской радиобашне — символу советского телевидения 40-60-х годов.

 Список использованной литературы:

1. Шипачёв В.С.: «Высшая математика»

2. В.А. Ильин, Э.Г. Позняк: «Аналитическая геометрия»

3. И.Н.Бронштейн, К.А.Семендяев «Справочник по математике для инженеров и учащихся ВТУЗОВ»



  © Реферат плюс


Поиск

  © REFERATPLUS.RU  

Яндекс.Метрика