Календарь
Август
Пн   7 14 21 28
Вт 1 8 15 22 29
Ср 2 9 16 23 30
Чт 3 10 17 24 31
Пт 4 11 18 25  
Сб 5 12 19 26  
Вс 6 13 20 27  

Доказательства теорем



Скачать: Доказательства теорем

Т.Сумма смежных углов = 180°

Т.Вертикальные углы равны (общая вершина,стороны одного сост.продолжение сторон друг.)

Две прямые наз-ся параллельн., если они лежат в 1-й плоскости и не пересекаются.

Акс. (осн.св-во паралл.прямых) Через точку, не леж. на данной прямой можно провести на плоскости только 1 прямую, параллельную данной.

Сл.: 1. Если прямая пересекает 1 из паралл. Прямых, то перес-ет и другую.

2. Если две прямые | | 3-ей, то | | друг другу.

Признаки параллельности прямых.   Е

ÐВАС ÐДСА внутр. одностор. (1рис)

ÐВАС ÐДСА внутр. накрест лежащ. (2)

ÐЕАВ ÐАСД соответств. (3)

Т 1. Если при пересеч. 2-х прямых на плоскости внутр.накрест лежащ. Ð =, то прямые параллельны.

Т 2. Если при пересеч 2-х прямх секущей соответственные углы равны,ðпрямые| |.

Док-во Пусть (а) и (b) обр-т к секущей АВ равные соотв. Ð1=Ð2

Но Ð1=Ð3 (вертикальные)ðÐ3=Ð2.Но Ð2 и Ð3-накрестлежщие.ðПо Т 1 a | | bn

Т3. Если при пересеч. 2-х прямых секущей на плоскости, сумма внутр. одност. Ð=180°, то прямые | |n

Для ТТ 1-3 есть обратыные.

Т4. Если 2 паралл.прямые пересечны 3-й

прямой, то внутр.накрестлеащие Ð=, соответств.Ð=, сумма внутр.одностÐ=180°.

Перпедикулярные пр-е пересек-ся Ð90°.

1.Через кажд.тчку прямой можно провести ^ ей прямую, и только 1.

2. Из любой тчки (Ï данной прямой) можно опустить перпендикуляр^ на данную прямцю и только 1.

3. две прямые ^ 3-й параллельны.

4. Если прямая ^ 1-й из | | прямых, то она ^ и другой.

Многоугольник (n-угольник)

Т. Любой правильный выпуклый мн-к можно вписать в окружность и описать около окружности. (R- опис.,  r- впис.)

R = a / 2sin(180°/n);  r = a / 2 tg (180°)

Треугольник NB! 1. Все 3 высоты каждогоÑ пересек. в 1 тчке (ортоцентр).

2. Все 3 медианы пересек. в 1 тчке (центр тяжести) - делит кажд. Медиану в отн 2:1 (счит. От вершины).

3. Все 3 биссектр. Ñ пересек. в 1 тчке центр впис. Круга.

4. Все 3 ^, восстановленные из середин сторон Ñ, пересе. в 1 тчке - центр опис. круга.

5. Средняя линия | | и = ? основания

H(опущ. на стор. a) = 2vp(p-a)(p-b)(p-c)

M(опущ на стор a) = ?  v 2b2+2c2 -a2

B (-‘’-)= 2v bcp(p-a) / b+c

p - полупериметр

a?=b?+c?-2bx, х-проекция 1-й из сторон

Признаки равенства Ñ: 2Ñ=, если = сотв.

1. 2 стороны и Ð между ними.

2. 2 Ð и сторона между ними.

3. 2 Ð и сторона, противолеж. 1-му из Ð

4. три стороны

5. 2 стороны и Ð , лежащий против большей из них.

Прямоугольный Ñ C=90° a?+b?=c?

NB! TgA= a/b; tgB =b/a;

sinA=cosB=a/c; sinB=cosA=b/c

Равносторонний Ñ  H= v3 * a/2

S Ñ= ? h a =? a b sin C

Параллелограмм

d?+d`?=2a?+ 2b?

S =h a=a b sinA(между а и b)

= ? d d` sinB (между d d`)

Трапеция S= (a+b) h/2 =?uvsinZ= Mh

Ромб S=a h =a?sinA= ? d d`

Окружность L= pRn° / 180°,n°-центрÐ

Т.Впис.Ð= ? L , L-дуга,на ктрую опирÐ

S(cектора)= ? R?a= pR?n° / 360°

Векторы.. Скалярное произведение

`а`b=|`a| |`b| cos (`a Ù`b),

|`a| |`b| - длина векторов

 Скалярное произведение |`a|{x`; y`} и |`b|{x``; y``}, заданных своими коорди-натами, =

|`a| |`b| = x` ×  y` + x`` × y``

Преобразование фигур

1. Центр. Симметрия

2. Осевая симметрия (^)

3. Симм. Отн-но плоскости (^)

4. Гомотетия  (точки Х О Х`` лежат на 1 прямой и расст. ОХ``=k OX, k>0 - это гомотетия отн-но О с коэфф. К .

5. Движение (сохр расст. Между точками фигуры)

6. Поворот

7. Вращение - вокруг оси - преобр. Пространства, когда:

- все точки оси переходят сами в себя

- любая точка АÏ оси р АðА` так, что

А и А` Î a, a^р, ÐАОА` = j= const, О- точка пересеч. a и р.

Результвт 2-х движений= композиции.

8. Паралeн.перенос (x,y,z)ð(x+a,y=b,x=c)

9. Преобразование подобюием - расст. Между тчками измен-ся в k раз

К=1 - движение.

Св-ва подобия.

1. АВСÎ(а); A`B`C` Î(a`)

2. (p) ð (p`); [p)ð[p`); aða`; ÐAðÐA`

3. Не всякое подобие- гомотетия

NB! S` = k? S``; V ` = k 3 V ``

Плоскости.

Т. Если прямая, Ï к.-л. плоскости a , | | к.-л. прямой, Î a, то она | | a

Т. (а) | | (b), через  (а)и (b) провести плоскость, то линия их пересеч.| | (а)и (b)

T. (Признак парал. 2-х плоск.).Если 2 пересек. прямые 1-й a | | двум пересек. прямым другой b, то a | | b.

Т. Если 2 парал. Плоск-ти пересеч. 3-й, то линии пересечения | |.

Т. Через тчку вне плоскости можно провести плоск-ть | | данной и только 1.

Т. Отрезки парал. Прямых, заключенные между 2-мя плоскостями, =.

Т. Признак ^ прямой и пл-сти.Если прямая, перек-ая плос-ть, ^каждой из 2-х перек-ся прямых, то прямая и пл-сть ^.

Т. 2 ^ к пл-сти | |.

Т. Если 1 из 2-х паралл. прямых ^, то и другая ^ плоскости.

Т. Признак ^ 2-х плос-тей. Если пл-сть проходит через ^ к др. п-сти, то он ^ этой л-сти.

Дано [a)^ b,[a) Îa,a Èb= (p).Д-ть: a ^ b

Док-во. [a)^ b=·М. Проведем (b) через М, (b)^(p). (a)Ù(b) - линейный Ð двугранного угла между a и b. Так как [a)^ bð(a)^(b)ð (a)Ù(b)=90°ða ^ bn

Т. Если 2 пл-сти взаимно ^, то прямая

1-й пл-сти ^ линии пересеч. пл-стей, ^ 2-й пл-сти.

Т. О 3-х ^.. Для того, чтобы прямая, леж-я в пл-сти,, была ^ наклонной, необх-мо и достаточно, чтобы эта прямая была ^ проекции наклонной.

Многогранники

Призма. V = S осн × a - прямая призма

a - боковое ребро , S пс- S ^-го сечения

V = S пс × а - наклонная призма

V = Sбок. пов-сти призмы + 2Sосн.

Если основание пр. = параллелограмм, то эта призма - параллелепипед.

V=h Sосн. ; Vпрямоуг.параллел-да = abc

S=2(ab+ac+bc)

Пирамида V= 1/3 * НS осн. S=S всех Ñ.

Фигуры вращения

Цилиндр V=pR?H; S= 2pR (R+H)

Конус V= 1/3 * НS осн= 1/3 * pR?H

S= Sосн+ Sбок= pR (r + L); L-образующая

Сфера «оболочка» S= 4pR?

Шар М= 4/3 pR3



  © Реферат плюс


Поиск

  © REFERATPLUS.RU  

Яндекс.Метрика