4. Мир глазами Поля Дирака

Объединение идей квантовой механики и релятивизма

Недостаточность “классической” квантовой механики.  По своему построению квантовая механика является существенно нерелятивистской теорией: используемое в уравнении Шредингера выражение для оператора Гамильтона является обобщением классической формулы для  энергии. Для множества реальных приложений теории (физика кристаллов, химия, биология)  требование малости скоростей не является существенным ограничением: диапозон энергий, с которыми приходится иметь дело в земных условиях недостаточен для разгона объектов до релятивистских скоростей. Однако существует целый ряд разделов естествознания, развитие которых сделало актуальным вопрос о разработке релятивистской квантовой теории. К ним прежде всего следует отнести разделы физики, занимающиеся взаимодействием света с веществом: зародившаяся в результате попыток поняти физическую природу света квантовая механика оказалась неспособной адекватно описать ультрарелятивистскую частицу - фотон. Релятивистская теория микромира необходима физике ядра и элементарных частиц, поскольку изучаемые в ее рамках процессы с участием сильных взаимодействий сопровождаются обменом большими порциями энергии, что неизбежно связано с возникновением высоких скоростей. Космологические теории эволюции Вселенной и Большого Взрыва требуют развития аппарата описания вещества в экстремальных (с нашей точки зрения) состояниях. Наконец, наличие плохо связанных друг с другом релятивистской и квантовой теорий, каждая из которых по-своему “объясняла” классическую концепцию, являющуюся предельным случаем каждой из них, неизбежно ставило вопрос об их объединении. Попытки обобщения квантовой механики и придания ей релятивистски инвариантной формы делались буквально с первых шагов ее создания, но до сих пор еще не привели к созданию законченной и полностью свободной от внутренних противоречий теории.
S-матрица. Дополнительной сложностью, присущей релятивистской теории является несохранение числа частиц, участвующих в процессе. В частности это означает, что любая рассматриваемая система должная обладать бесконечным числом степеней свободы. Поскольку сама процедура измерения координат частицы в принципе может приводить к рождению новых частиц, она становится принципиально бессмысленной. Релятивистская квантовая теория отказывается не только от описания пространственного положения микрообъектов,  но и от описания процессов с их участием в виде происходящих последовательно (друг за другом) промежуточных событий. Расчеты поддаются лишь амплитуды вероятностей переходов системы из исходного состояния при , в котором все входящие в нее частицы находятся так далеко друг от друга, что взаимодействие между ними пренебрежимо мало в одно из допустимых законами сохранения  конечное состояние при , в котором продукты реакции вновь являются практически свободными объектами. Набор амплитуд таких переходов образует s-матрицу,  вычисление которой и является задачей релятивистской квантовой теории.

Уравнение Клейна-Гордона было первой удачной попыткой обобщения уравнения Шредингера на случай релятивистского описания электромагнитных взаимодействий микрообъектов. В основе предложенного вывода лежала идея заменить нерелятивистский оператор Гамильтона в уравнении Шредингера

  1.      

на его релятивистский аналог, вид которого устанавливался на основании сравнения классических (не квантово-механических)  выражений для релятивистской и нерелятивистской функций Гамильтона:

  1.           
  2.         ,

где учтена возможность взаимодействия зарядов с электрическим и магнитным полями, описываемыми потенциалами  и A.
Основная математическая трудность, возникающая при попытке перевести релятивистскую формулу  (3) на язык квантово-механических операторов состояла в том, что операция извлечения корня из оператора не определена. Предложенный выход состоял в переходе к уравнению второго порядка, возникающего при возведении в квадрат операторного аналога уравнения  (3), где сам оператор Гамильтона согласно (1) заменялся на оператор дифференцирования по времени:

  1.   .

Полученное таким образом уравнение могло быть легко протестировано на хорошо изученном частном случае описания фотона (q=0, m=0).  Подстановка указанных значений приводит к обыкновенному уравнению Д’Аламбера, описывающему распространение света в вакууме.
Уравнение Клейна-Гордона в настоящее время считается правильным релятивистским обобщением уравнений квантовой механики, не учитывающих наличие спина у микрообъектов. Оно адекватно оисывает поведение частиц с нулевым спином.

Фермионы

Интерференция тождественных частиц. Как отмечалось, все электроны эквиволентны друг другу. Это означает, что в случае системы с несколькими электронами в различных состояниях принципиально невозможно указать, какой из электронов реально находится в каждом из состояний. Общие принципы квантовомеханического описания позволяют описать эту “классически странную” ситуацию весьма просто:  существует множество ортогональных базисных состояний системы (на самом деле неразличимых), соответствующих всевозможным размещениям “мысленно занумерованных” электронов по одноэлектронным состояниям, а реализующееся в природе состояние есть их суперпозиция. Например, простой двухэлектронной системой с двумя состояниями является атом гелия (рис. 28_1), один электрон которого находится на самом нижнем энергетическом уровне , а другой - на ближайшем возбужденном уровне . Мыслимы симметричная и антисимметричная линейные комбинации эквиволентных состояний:
(1)      .
В рамках релятивистской квантовой теории исходя из требований релятивистской инвариантности и положительности числа частиц в системе может быть получен однозначный ответ на вопрос, какое из этих двух состояний реализуется в природе:  амплитуды тождественных частиц с полуцелым спином интерферируют, всегда образуя антисиметричные состояния, в случае систем тождественных частиц с целым спином всегда реализуются симметричные системы . По мнению Р.Фейнмана  сложность доказательства столь просто формулируемого правила свидетельствует о неполноте наших знаний фундаментальных законов природы.

Фермионы. Из правила интерференции непосредственно следует принцип Паули для электронов: в случае нахождения двух электронов в полностью эквивалентных состояниях (все квантовые числа одинаковы) разность в (1) превращается в 0, что означает равную нулю вероятность реализации такого состояния, т.е. его невозможность.
Специфическое свойство частиц с полуцелым спином (“фермионов”) не занимать состояния с уже имеющейся частицей видоизменяет функцию их распределения по сравнению с классической статистикой Больцмана:
(2)      .
Распределение (2) получило название статистики Ферми-Дирака.
Указанному свойству фермионов наш мир “обязан” своим многообразием: если бы запрета Паули не существовало, элетроны всех атомов собирались бы на самом нижнем энергетическом уровне, химические свойства различных элементов были бы одинаковыми.

Вырожденный ферми-газ.

Литература

Основная

1. А.Г.Спирин "Основы философии", М., 1988.

2. В.П.Бранский "Философское значение "проблемы наглядности" в физике", Л., 1962.

3. Л.Купер "Физика для всех", Наука, М., 1980, т.1,2.

4. Р.Фейнман "Характер физических законов", М., 1970.

Дополнительная

5. И.Р.Пригожин "От существующего к возникающему", М., 1994.

6. Ю.Л.Ермолаев, А.Л.Сание "Электронная синергетика", ЛГУ, 1989.

7. Ю.Л.Климонтович "Турбулентное движение и структура хаоса",  Наука,1990.

8. А.П.Пурмаль "Как превращаются вещества", Наука,1989.

9. М.Д.Франк-Каменецкий "Самая главная молекула", Наука, 1989.

10.М.Б.Веркимблит "Электричество в живых организмах", Н.,1989.

11. И.Д.Новиков “Как взорвалась Вселенная”, Н.,1990.

12. К.Ю.Богданов “Физик в гостях у биолога”. Н., 1990.

13. А.В.Бялко “Наша планета Земля”. Н. 1990.