Календарь
Ноябрь
Пн   6 13 20 27
Вт   7 14 21 28
Ср 1 8 15 22 29
Чт 2 9 16 23 30
Пт 3 10 17 24  
Сб 4 11 18 25  
Вс 5 12 19 26  

Рождение звезд



Скачать: Рождение звезд

Основные звездные характеристики

Светимость и расстояние до звезд

Звезды наблюдаются как "точечные" источники излучения. Это означает, что их угловые размеры очень малы. Даже в самые большие телескопы нельзя увидеть звезды в виде "реальных" дисков. Подчеркиваю слово "реальных", так как благодаря чисто инструментальным эффектам в фокальной плоскости телескопов получается "ложное" изображение звезды в виде диска. Угловые размеры этого диска редко бывают меньше одной секунды дуги, но даже для ближайших звезд они должны быть меньше одной сотой доли секунды дуги.

Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, "разрешена". Это означает, что мы можем измерять только потоки излучения от звезд в разных спектральных участках. Мерой величины потока является звездная величина.

Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающее нескольких десятков парсек, расстояние определяется тригонометрическим методом. Он заключается в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для большинства более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять. На помощь приходят другие методы, значительно менее точные, но достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения.

Спектры звезд и их химический состав

Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1... В9, А0 и так далее. Спектр звезд похож на спектр излучающего "черного" тела с некоторой температурой Т.

Эти температуры плавно меняются от 40 – 50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходится на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности Земли. Однако в последние десятилетия были запущены специализированные искусственные спутники Земли; на их борту были установлены телескопы, с помощью которых оказалось возможным исследовать и ультрафиолетовое излучение.

Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.

Химический состав наружных слоев звезд, откуда к нам "непосредственно" приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов мало. Приблизительно на каждые десять тысяч атомов водорода приходятся тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота, всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд — это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (G2), представляются желтыми, звезды же спектральных классов К и М красного цвета. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи ("В"), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом ("V"). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектр звезды с точностью до подкласса. Для слабых звезд анализ цветов — единственная возможность их спектральной классификации.

Температура и масса звезд

Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как излучение звезд приблизительно похоже на излучение черных тел соответствующей температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана Больцмана:

Где = 5,6 • 10-5 — постоянная Больцмана.

Мощность излучения всей поверхности звезды (светимость) будет равна:

L = 4 R2 • T4,

Где R — радиус звезды. Таким образом, для определения радиуса звезды надо знать ее светимость и температуру поверхности.

Нам остается определить еще одну характеристику звезды — ее массу. Надо сказать, что это сделать не так просто. А главное, существует не так уж много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая полуось орбиты а и период обращения Р известны. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде:

Где М1 и М2 — массы компонент системы, G — постоянная в законе всемирного тяготения Ньютона. Уравнение дает сумму масс компонент системы. Если известно отношение орбитальных скоростей, то их массы можно определить отдельно. К сожалению, только для небольшого количества двойных систем можно таким образом определить массу каждой из звезд.

Астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, то прогресс наших знаний был бы значительно более быстрым. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Последние же определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее "сестра", входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.

Связь основных звездных величин

Итак, современная астрономия располагает методами определения основных звездных характеристик: светимости, поверхностной температуры (цвета), радиуса, химического состава и массы. Возникает важный вопрос: являются ли эти характеристики независимыми? Оказывается, нет. Прежде всего, имеется функциональная зависимость, связывающая радиус звезды, ее светимость и поверхностную температуру. Эта зависимость представляется простой формулой и является тривиальной. Однако давно уже была обнаружена зависимость между светимостью звезд и их спектральным классом (цветом). Эту зависимость эмпирически установили (независимо) на большом статистическом материале еще в начале нашего столетия выдающиеся астрономы Герцшпрунг и Рассел.

Звезды рождаются

Межзвездный газ

Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось то, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающееся открытие, как и многие другие, было сделано с помощью спектрального анализа.

Почти половину столетия межзвездный газ исследовался путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/с. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу Солнца и звезд. Преобладающими элементами являются водород и гелий, остальные элементы мы можем рассматривать как "примеси".

Межзвездная пыль

До сих пор мы имели в виду только межзвездный газ, но имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали выше, что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 года с несомненностью было доказано, что межзвездное пространство не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее всего поглощаются синие и фиолетовые лучи, поглощение в красных лучах сравнительно невелико.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловлено межзвездной пылью, то есть твердыми микроскопическими частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени "ориентируются", то есть направления их вытянутости имеют тенденцию "выстраиваться" в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Разнообразие физических условий

Характерной особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны, кинетическая температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч частиц на кубический сантиметр, и весьма разряженная среда между облаками, где концентрация не превышает 0,1 частицы на кубический сантиметр. Имеются, наконец, огромные области, где распространяются ударные волны от взрывов звезд.

В Галактике наблюдаются значительно большие по своим размерам, массе и плотности агрегаты холодного межзвездного вещества, получившие название "газово-пылевых комплексов". Для нас самым существенным является то, что в таких газово-пылевых комплексах происходит важнейший процесс конденсации звезд из диффузной межзвездной среды.

Почему должны рождаться новые звезды?

Значение газово-пылевых комплексов в современной астрофизике очень велико. Астрономы уже давно связывали образования конденсации в межзвездной среде с важнейшим процессом образования звезд из "диффузной", сравнительно разряженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразования? Следует подчеркнуть, что уже с сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно образовываться из какой-то качественно другой субстанции. К 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез. Грубо говоря, большинство звезд излучают, потому что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Так как масса одного протона (в атомных единицах) равна 1,0081, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Этим определяется запас ядерной энергии в звезде, которая постоянно тратится на излучение. В самом благоприятном случае запаса ядерной энергии хватит на 100 миллионов лет, в то время как в реальных условиях эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет — ничтожный срок для эволюции нашей Галактики, возраст которой не меньше 10 миллиардов лет.

Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Получается, что звезды никак не могут быть в Галактике "изначально", то есть с момента ее образования. Оказывается, что ежегодно в Галактике "умирает" хотя бы одна звезда. Значит, чтобы "звездное племя" не "выродилось", необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того чтобы в течение длительного времени Галактика сохраняла бы неизменными свои основные особенности, необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие между рождающимися и "гибнущими" звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще "не успели" умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.

Газово-пылевые комплексы — колыбель звезд

Откуда же берутся в нашей Галактике молодые и "сверхмолодые" звезды?

С давних пор астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое теоретическое основание такого убеждения — гравитационная неустойчивость первоначально однородной диффузной среды. В такой среде неизбежны малые возмущения плотности, то есть отклонения от строгой однородности. в дальнейшем, однако, если массы этих конденсаций превосходят некоторый предел, под влиянием силы всемирного тяготения малые возмущения будут нарастать, а первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти конденсации будут продолжать сжиматься и, как можно полагать, превратятся в звезды.

Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Так, к примеру, облако с массой, равной солнечной, сожмется за миллион лет.

В процессе первой стадии конденсации газово-пылевого облака в звезду, которая называется "стадией свободного падения", освобождается определенное количество гравитационной энергии. Половина освободившейся при сжатии облака энергии должна покинуть облако в виде инфракрасного излучения, а половина пойти на нагрев вещества.

Как только сжимающееся облако станет непрозрачным для своего инфракрасного излучения, светимость его резко упадет. Оно будет продолжать сжиматься, но уже не по закону свободного падения, а гораздо медленнее. Температура его внутренних областей будет непременно повышаться, так как половина освобождающейся при сжатии гравитационной энергии будет идти на нагрев облака. Правда, такой объект назвать облаком уже нельзя. Это уже самая настоящая протозвезда.

Таким образом, из простых законов физики следует ожидать, что может иметь место единственный и закономерный процесс эволюции газово-пылевых комплексов сначала в протозвезды, а потом и в звезды. Однако возможность — это еще не есть действительность. Первейшей задачей наблюдательной астрономии является, во-первых, изучение реальных облаков межзвездной среды и анализ их способности сжиматься под действием собственной гравитации. Для этого надо знать их размеры, плотность и температуру. Во-вторых, очень важно получить дополнительные аргументы в пользу "генетической близости облаков и звезд. В-третьих, очень важно получить из наблюдений неопровержимые свидетельства существования самых ранних этапов развития протозвезд. Кроме того, здесь могут наблюдаться совершенно неожиданные явления. Наконец, следует детально изучать протозвезды. Но для этого надо уметь отличать их от "нормальных" звезд.

Звездные ассоциации

Эмпирическим подтверждением процесса образования звезд из облаков межзвездной среды является то обстоятельство, что массивные звезды классов О и В группируются в отдельные обширные скопления, которые получили название "ассоциации". Но такие звезды должны быть молодыми объектами. Таким образом, сама практика астрономических наблюдений подсказывала, что звезды рождаются как бы гнездами, что качественно согласуется с представлениями теории гравитационной неустойчивости. Молодые ассоциации звезд тесно связаны с большими газово-пылевыми комплексами межзвездной среды. Естественно считать, что такая связь должна быть генетической, то есть эти звезды образуются путем конденсации облаков газово-пылевой среды.

Процесс рождения звезд, как правило, скрыт от нас пеленой поглощающей свет космической пыли. Только радиоастрономия, как можно теперь с большой уверенностью считать, внесла радикальное изменение в проблему изучения рождения звезд. Во-первых, межзвездная пыль не поглощает радиоволны. Во-вторых, радиоастрономия открыла совершенно неожиданные явления в газово-пылевых комплексах межзвездной среды, которые имеют прямое отношение к процессу звездообразования.

Кратко обо всем процессе рождения

Мы довольно подробно рассматривали вопрос о конденсации в протозвезды плотных холодных молекулярных облаков, на которые из-за гравитационной неустойчивости распадается газово-пылевой комплекс межзвездной среды. Здесь важно еще раз подчеркнуть, что этот процесс является закономерным, то есть неизбежным. В самом деле, тепловая неустойчивость межзвездной среды неизбежно ведет к ее фрагментации, то есть к разделению на отдельные, сравнительно плотные облака и межоблачную среду. Однако собственная сила тяжести не может сжать облака. Но тут "вступает в игру" межзвездное магнитное поле. В системе силовых линий этого поля неизбежно образуются довольно глубокие "ямы", куда "стекаются" облака межзвездной среды. Это приводит к образованию огромных газово-пылевых комплексов. В таких комплексах образуется слой холодного газа, так как ионизирующее межзвездный углерод ультрафиолетовое излучение звезд сильно поглощается находящейся в плотном комплексе космической пылью, а нейтральные атомы углерода сильно охлаждают межзвездный газ и "термостатируют" его при очень низкой температуре. Так как в холодном слое давление газа равно внешнему давлению более нагретого окружающего газа, то плотность в этом слое значительно выше и достигает нескольких тысяч атомов на кубический сантиметр. Под влиянием собственной гравитации холодный слой "фрагментирует" на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы.

Когда существенная часть массы газа превратится в звезды, межзвездное магнитное поле, которое своим давлением поддерживало газово-пылевой комплекс, не будет оказывать воздействия на звезды и молодые протозвезды. Под влиянием гравитационного притяжения Галактики они начнут падать к галактической плоскости. Таким образом, молодые звездные ассоциации всегда должны приближаться к галактической плоскости.

Библиографический список

  1. Шкловский И. С. Звезды: их рождение, жизнь и смерть.
  2. Бакулин П. И. Курс общей астрономии.
  3. Ефремов Ю. Н. В глубины Вселенной.


  © Реферат плюс


Поиск

  © REFERATPLUS.RU  

Яндекс.Метрика